
ARTICLE

Long-term droughts may drive drier tropical forests
towards increased functional, taxonomic and
phylogenetic homogeneity
Jesús Aguirre-Gutiérrez 1,2✉, Yadvinder Malhi 1, Simon L. Lewis 3,4, Sophie Fauset 5,

Stephen Adu-Bredu6, Kofi Affum-Baffoe7, Timothy R. Baker3, Agne Gvozdevaite1, Wannes Hubau 3,8,

Sam Moore1, Theresa Peprah6, Kasia Ziemińska9,10, Oliver L. Phillips 3 & Imma Oliveras1

Tropical ecosystems adapted to high water availability may be highly impacted by climatic

changes that increase soil and atmospheric moisture deficits. Many tropical regions are

experiencing significant changes in climatic conditions, which may induce strong shifts in

taxonomic, functional and phylogenetic diversity of forest communities. However, it remains

unclear if and to what extent tropical forests are shifting in these facets of diversity along

climatic gradients in response to climate change. Here, we show that changes in climate

affected all three facets of diversity in West Africa in recent decades. Taxonomic and

functional diversity increased in wetter forests but tended to decrease in forests with drier

climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient.

Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier

forests showed functional, taxonomic and phylogenetic homogenization. Understanding how

different facets of diversity respond to a changing environment across climatic gradients is

essential for effective long-term conservation of tropical forest ecosystems.
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The biosphere is experiencing unprecedented changes in
biodiversity and restructuring of species composition at
local and global scales1. Evidence gathered from the

Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES) demonstrates large biodiversity
declines, with around one million species threatened with
extinction, posing a threat to the functioning of ecosystems and
human well-being2. Some of the main drivers of such biodiversity
decline are climate related: altered precipitation and temperature
patterns, and extreme weather events3. In West Africa, a drying
environment over the last decades has been associated with
changes in forest composition, leaf phenology and community-
level functional traits4,5, i.e. the intrinsic morphological/physio-
logical characteristics of species. Future changes in climatic
conditions may not only impact forest taxonomic diversity and
functional trait composition but even threaten entire phylogenetic
clades of forest ecosystems6. Aside from climatic conditions, soil
characteristics, e.g., texture and fertility, may also determine
forest responses to a changing climate. For instance, forest soils
high in clay may be able to maintain higher water availability over
longer periods during droughts than sandy soils where the water
holding capacity tends to be lower7. Moreover, tropical forests in
drier regions tend to be associated with nutrient richer soils in
comparison to wetter tropical forests, which may confer further
resistance to a changing climate8. Such soil–rainfall–plant feed-
backs may be disrupted under a drying climate, especially in
nutrient poor soils and thus strongly affect the functioning of
forest ecosystems.

Although much work has been done focusing on species
richness distribution patterns9, the importance of other facets of
diversity, such as functional diversity10,11 and phylogenetic
composition12 have been increasingly highlighted. It has become
evident the role that high functional and phylogenetic diversity
levels may play for increasing the ecosystems resilience to changes
in environmental conditions. Functional diversity can enhance
the capacity of ecosystems to resist or be resilient to new envir-
onmental conditions13,14 and could prevent them from shifting
into alternative states, e.g., shifts from a closed-canopy tropical
forest to an open savanna-like vegetation or vice versa15. Phylo-
genetic diversity can render insights about the species evolu-
tionary history, adaptations to past environmental conditions and
into their irreplaceability in a community16. These three facets of
diversity, taxonomic, functional and phylogenetic, can contribute
to ecosystem stability and functions such as carbon sequestra-
tion17, water capture18 and buffering of temperature variability19,
and therefore, decreases in any of them could potentially generate
negative forest feedbacks and disturb the functioning of
ecosystems.

Although there is compelling evidence that tropical forest
communities are responding to atmospheric change20 and that as
a result such communities may experience strong species declines
in the near future21, we are just beginning to understand how
such forests respond to a shifting environment on multidecadal
time spans22. Moreover, the question remains as whether tropical
forests along climatic gradients show coordinated responses to
climate change regarding their functional, taxonomic and phy-
logenetic facets of diversity. It has been recently shown that the
plant traits composition in West African tropical forests has
shifted more in drier than wetter forests, arguably as a result of a
changing climate4. In such drier forests the abundance of
deciduous species is increasing, which could be generating forest
communities better adapted to a drying climate5. Esquivel-
Muelbert et al.22 suggest that in Amazonia, drought adapted
species may be expanding their range and increasing in abun-
dance, and in SE Asian forests there is evidence of shifts in
composition23 and carbon sink dynamics after extreme weather

events, such as El Niño, but without a uniform response along
disturbance gradients24. Overall, it is not yet understood if such
possible shifts in functional, taxonomic and phylogenetic diver-
sity along climatic gradients and in response to a changing cli-
mate are taking place, if such shifts are in the same direction (i.e.,
increases or decreases in diversity) and if so with what intensity.
Understanding the above-mentioned processes and filling this
knowledge gap is of relevance as changes in the three facets of
diversity may have different implications for the functioning of
ecosystems and their responses to environmental changes25.

Here, we investigate if and how climate change, given an
observed multidecadal drying trend5, has affected the functional,
taxonomic and phylogenetic diversity of tropical forests in West
Africa, and if the forests responses to climate change are
dependent on their position along the climatic gradient. We
specifically ask (1) if and to what extent there have been shifts in
the three facets of diversity across time; (2) to what extent such
shifts are explained by changes in climate? and 3) if the diversity
shifts are synchronous and monodirectional, i.e., whether diver-
sity uniformly increases or declines across the climatic gradient.
We expect that a drying trend would be reflected in overall
diversity decreases along the water deficit gradient, however,
forest communities located in the drier end of the water deficit
gradient may experience higher climatic stress and therefore the
diversity changes may be stronger in those locations. Responses
in the three facets of diversity may be determined by soil char-
acteristics in addition to climatic conditions; for example, soils
rich in nutrients and with higher water holding capacity (e.g.,
higher clay content) may buffer drought impacts on forest
communities7, as drought resilience may vary not only with depth
to water table but also with soil nutrient content26. Therefore, we
also investigate the role of soil characteristics on the response of
the three facets of diversity along the climatic gradient and
across time.

We analyse changes in functional (FDis)27 (Supplementary
Table 2), taxonomic (Simpson diversity index)28,29, and phylo-
genetic diversity (mean pairwise phylogenetic distance, MPD)30

of 21 unique vegetation plots from the African Tropical Rain-
forest Observation Network (AfriTON; Fig. 1) across time (range
1987–2013; Supplementary Table 1). To assess shifts in the three
facets of diversity we use their yearly rate of change and apply
Bayesian estimation31,32. To investigate the role that climate may
play on determining changes in the three facets of diversity we
calculate the mean maximum climatic water deficit and vapour
pressure deficit for the full term of the study (MCWDFull and
VPDFull respectively), for each census time and calculate the
absolute changes for each metric (ΔMCWDAbs and ΔVPDAbs).
Then we conduct a principal component analysis of the soil
characteristics (Supplementary Table 3). We construct different
statistical models under a Bayesian framework (Supplementary
Table 4) to test for the effects of climatic and soil conditions on
the changes in diversity.

We find differential responses of tropical forests to a changing
environment with direr tropical forests showing stronger declines
in the three facets of diversity in contrast to wetter tropical for-
ests. Our results fill knowledge gaps on the coordination of
changes in biodiversity in tropical forest as a response to climate
changes, and on the extent to which forest communities may be
susceptible to a changing environment depending on their cur-
rent position along the climatic gradient.

Results
Changes in functional, taxonomic and phylogenetic diversity.
Overall, our results show that the three facets of diversity changed
across time, and that such changes were not necessarily
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synchronous and equal across the climatic gradient, with the
three facets of diversity usually decreasing more at the drier end
than at the wetter end of the water availability spectrum
(Fig. 2a–c and Supplementary Fig. 1).

Forest communities in drier sites (more negative maximum
climatic water deficit, MCWD) experienced on average stronger
declines (Probability= 95.2%) in functional diversity (FDis)
across time than forest communities in wetter areas (Fig. 2a, d).
Taxonomic diversity (Simpson) changes across time differed
also along the climatic gradient (Fig. 2b), with drier forest
communities showing on average stronger declines
(Probability= 96.9.%) in taxonomic diversity than communities
located in wetter areas (Fig. 2e). The phylogenetic diversity
(MPD) showed large average decreases along the climatic
gradient (Fig. 2c), with forests at the drier end of the water
deficit spectrum showing on average larger (μ=−0.03) but not
statistically different rates of phylogenetic diversity declines than
forests in wetter locations (Probability= 61.7%; Fig. 2f). In
general, the forest communities have transitioned towards lower
phylogenetic diversity across time (Fig. 2d–f). The phylogenetic
and functional diversity changes were not significantly correlated
(Supplementary Fig. 2) even though all traits that conform the
functional diversity metric (FDis), showed significant phyloge-
netic signal (Supplementary Table 5).

In summary, the drier forests are transitioning towards
increasingly more homogenous forest communities, diverging
further from wetter forests in functional, taxonomic and
phylogenetic diversity. The changes in the three facets of diversity
do not appear to be driven by changes in the plots’ basal area (see

extended community dynamics text in SI) as the changes in basal
area were not related to changes in functional (R2=−0.01, P=
0.94), taxonomic (R2= 0.28, P= 0.21) or phylogenetic diversity
(R2=−0.17, P= 0.46). Moreover, the species with strongest
changes in basal area (Supplementary Fig. 3) did not show
phylogenetic clustering as they did not cluster in specific locations
of the phylogenetic tree (Supplementary Fig. 4).

Climatic and soil drivers of changes in facets of diversity. The
full-term (1964–2013) water deficit (MCWDFull) ranged between
−167.36 and −300.74 mm along the climatic gradient, the
MCWD became more negative across all forest plots over the
study period and increased their VPD (Supplementary Table 1).
Soil properties varied greatly among forest communities with
some of the main soil properties such as cation exchange capacity
ranging between 10.99 and 29.14 mmol kg and soil phosphorous
ranging between 34.97 and 137.75 mg kg (Supplementary
Table 3). Climatic and soil conditions partly explained the
changes in functional, taxonomic and phylogenetic diversity that
have occurred over the past three decades in forest communities
in West African tropical forests (Table 1). The best statistical
models (Table 1; Supplementary Table 6) showed that while
changes in functional and taxonomic diversity were best
explained by changes in climatic conditions (ΔMCWDAbs),
changes in phylogenetic diversity were also strongly mediated by
soil characteristics (Table 1). Results for the second best models
for the three facets of diversity following the leave one out cross-
validation are also shown in Supplementary Table S7. Functional
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Fig. 1 The distribution of vegetation plots (green dots) in Ghana, West Africa. The top panel shows the maximum climatic water deficit (MCWD) and
the bottom the vapour pressure deficit (VPD) over the study area averaged over the full study period. The plot data from the African Tropical Rainforest
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diversity decreased the most (up to −3.9e−4 yearly rate and
−7.2e−3 in total for plot BBR_16) in areas that experienced the
strongest negative ΔMCWDAbs (−27.5 mm; Fig. 3a) and
increased (yearly rate of up to 4.3e−4 for CAP_10 and 4.2e−4 for

KDE_02) in areas that experienced the smallest ΔMCWDAbs

(−7.5 mm; R2adj= 0.41; Table 1). Taxonomic diversity tended to
increase in areas where ΔMCWDAbs was small and decreased in
areas where ΔMCWDAbs was strongly negative (R2adj= 0.24;
Fig. 3b; Table 1). Changes in phylogenetic diversity (MPD) were
best explained by the soil components related to the three PC axes
and their interaction with climatic conditions (Table 1; R2adj=
0.9). PC1 is a nutrients axes (eCEC), PC2 is an acidity-calcium
axis (pH-Ca) and PC3 a soil texture axis (%Sand and %Clay;
Supplementary Table 3). Overall, most forest communities (15
vegetation plots) decreased in phylogenetic diversity (ΔMPDr up
to −0.47 for plot ESU_18). Communities where the water deficits
increased (became drier; up to −27.5 mm) showed the stronger
declines in phylogenetic diversity as soils became more acidic and
in more sandy soils (Fig. 3c, d). Forest communities found in
areas with smaller water deficits but average or higher than
average soil acidity and in more sandy soil tended to show
stronger declines in phylogenetic diversity in contrast to com-
munities with higher water deficits (Fig. 3e, f). Forest commu-
nities in areas with high soil nutrients or in more sandy soils and
which experienced small increases in VPD (mostly drier com-
munities), showed stronger MPD declines in comparison to
communities that experienced the strongest changes in VPD
(overall wetter communities; Fig. 3g, h).

Discussion
Here, we show differential shifts in functional, taxonomic and
phylogenetic diversity in tropical forest communities distributed
along a strong climatic gradient and through decadal time spans
in West Africa. These shifts are partly explained by changes in
climatic conditions and by inherent soil properties. Our findings
show that forests that normally experience higher seasonal water
deficit, and that became drier through time, tended to become
more homogeneous in the three facets of diversity under a drying
climate. In contrast, wetter forests showed on average increases in
functional and taxonomic diversity under a drying climate. Thus,
our results suggest that drier tropical forests that have experi-
enced increases in water deficits may be less resistant (in terms of
community composition) to a drying environment than wetter
forest communities.

The observed shifts in facets of diversity across tropical forest
communities provide a fundamental advance in our under-
standing of how forests may respond under a drying climate,
showing that such responses may depend on the forest commu-
nities position along the climatic gradient and the changes in
water availability experienced across time. This advances from
previous evidence of changes in plant composition towards
drought tolerant species5 and trait compositional changes in West
African tropical forests4 by bridging the functional, taxonomic
and phylogenetic diversity responses. Although we did not
investigate how changes in each of the three facets of diversity
affect ecosystem functioning, there is strong support from recent
studies showing how decreasing functional33, taxonomic34,35 and/
or phylogenetic36,37 diversity may cause severe loss of forest
functions, such as resources uptake, cycling and biomass pro-
duction and resilience to a changing climate across spatial and
temporal scales25. As such, ecosystem functions of communities
that show decreases across all three facets of diversity could be
especially vulnerable under a drying climate.

Our results partly meet our expectation of decreasing diversity
given a drying trend. Such changes in diversity were not equal
along the climatic gradient and depended on the climatic
water deficit, its change and the change in the VPD experienced
by the forest communities. In general communities in drier
locations also experienced stronger declines in water availability
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(see Fig. 2a). We expected drier forests that further experienced
strong negative changes in water availability to suffer more from
such drying conditions than wetter forests given they may already
be at their climatic threshold. It is possible the forest communities

that have experienced high water deficits for long periods of time
and that experienced further negative changes in water avail-
ability to become less diverse after prolonged droughts (see14)
such as those experienced in West Africa. Moreover, we show
how even slight increases in VPD may cause diversity to decline
in areas already under water shortages, as is the case of the drier
tropical forest in Ghana (Fig. 3g, h). Increased VPD may lead to
greater transpiration and lower photosynthetic activity specially
under drought conditions. Yuan et al.38 have shown how
increases in VPD can reduce vegetation growth as a result of
changes in photosynthetic activity, and may also cause faster
mortality during drought for tree seedlings39, which could thus
affect ecosystem functioning. Our results and other recent work
analysing functional trait shifts in tropical forests4 evidence how
climate may be acting on the filtering of species in such high
water deficit communities, which are already under high climatic
pressure and at the edge of their climatic suitability. We show that
those communities are in general becoming functionally, tax-
onomically and phylogenetically more homogeneous than forest
communities in areas less restricted by water availability, and thus
they may be less resistant40 to further changes in climatic con-
ditions. A recent study for West African tropical forests shows
that single plant traits at the community level are shifting the
most in drier forests4, which supports our findings of such forests
being the ones also changing the most in their overall diversity. In
Neotropical forests Esquivel-Muelbert et al.22 found increases in
dry-affiliated taxa suggesting those tropical forests are also
shifting and favouring communities that are better adapted to
drier conditions. It is possible that the forest communities in the
drier end of the forests we analysed have reached such threshold
because of the long-term drying trend experienced in this region5.
This ultimately could create a less diverse tropical forest that may
in principle cope better with a drying climate14. However, such
changes in plant community composition may also impact the
way the ecosystem functions and its contributions to people, as
for biomass production, carbon capture and biogeochemical
cycling41.

Soil properties are a main determinant of species distributions
and ecosystem functioning7 and provide vital nutrients to
plants42. Furthermore, depending on the soils water holding
capacity they act as water reservoir for plants through the dry
seasons or during extreme weather events such as El Nino43. The
ecosystem functions carried out in tropical forests are the result of
not only the species available in the community but more spe-
cifically of their functional traits and the inherent phylogenetic
relationships between them44–46. Our results show that soil
nutrient content, acidity and texture strongly determined the
observed changes in phylogenetic diversity over time in West
African forests. Our results reveal that forest communities in
nutrient poorer, sandy and acidic soils are show to be the ones
displaying slight increases in phylogenetic diversity under drying,
response that is also mediated by the climatic conditions in the
forest community (see Fig. 3c–h). Such communities resemble the
areas of climate refugia of tropical forests in Ghana discussed by
Maley47 (see Fig. 5 in47) and such areas may also encompass the
soil characteristics and higher levels of phylogenetic diversity
found on the wetter tropical forests shown in this study. Hall and
Swaine48 have shown that Ghanaian drier tropical forests tend to
be richer in soil nutrients than wetter forests and Meir and
Pennington8 suggested the same for drier in comparison to wetter
neotropical forests, which concurs with our findings, as the few
communities increasing in phylogenetic diversity occurred on
soils with lower than average nutrients content (see Fig. 3c). This
association of poor soils and high phylogenetic diversity could in
principle also determine the tree community composition, and
thus the phylogenetic associations between the species present in
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Fig. 3 Climatic and soil drivers of observed rates of change in the three
facets of diversity. a Functional (ΔFDisr), b taxonomic (ΔSimpsonr) and
c–h phylogenetic (ΔMPDr) diversity in West African forest communities.
Changes in functional and taxonomic diversity were mainly explained by the
absolute changes in the maximum climatic water deficit (ΔMCWDAbs).
Observed changes in phylogenetic diversity were better explained by the soil
characteristics covered by the three PC axes (Supplementary Table 3) and
their interaction with climatic drivers (ΔMCWDAbs, ΔMCWDFull, ΔVPDAbs).
PC1: eCEC(+), magnesium(+) and nitrogen(+); PC2: pH(−), Fe(+) and Ca
(−); PC3: %Clay(−) and %Sand(+). The solid black fitted line shows the
mean posterior prediction for the functional and taxonym diversity change
models. The red and blue fitted lines shows the mean posterior predictions
for the phylogenetic diversity based on the minimum and maximum values
of the climatic drivers included in the model (Table 1). Grey lines show 700
random draws from the posterior distribution representing variability of the
expected model fit. n= 21 unique vegetation plots.
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the community due to a strong soil–plant feedback that is phy-
logenetically dependent49. Such soil–plant feedback may be dis-
rupted under a drying climate thereof impacting the local
soil–plant symbiotic interactions and pathogen communities36,
and likely having a negative effect on the plant communities
and general forest ecosystem. The best model explaining
changes in functional and taxonomic diversity did not include
any of the soil related drivers, although it has been shown
for other tropical forests, such as the Amazon (e.g.50,51), that soil
is a main driver of species distributions7,52. Soil fertility has also
been suggested to be one of the main determinants of plant
species distributions in Ghanaian tropical forests53, however, we
did not find evidence that it also mediates their response to a
changing climate by shifting their functional or taxonomic
diversity.

We observed an asynchronous shift in the facets of diversity
along the climatic gradient, which suggests that communities
respond in different ways to environmental changes depending on
their current position along the gradient (e.g., if in wetter or drier
locations). Such response may be mediated by functional trait
characteristics, which underpin the capacity of communities to
pose an effect on the environment and also respond to climate
changes. Our results suggest that drier forest communities are
changing their functional trait composition in part as a response to
a drying climate. Such changes are selecting for species better
adapted to drier conditions as shown by the already observed
increases in the abundance of deciduous species, with lower leaf
area: sapwood area ratios (LA:SA) and higher photosynthetic
capacity in West African tropical forests5. In contrast, wetter forest
communities, which in general experienced smaller changes in
water availability across time, do not show such species filtering
patterns, probably given their higher atmospheric and ground
water availability in comparison to that available for drier forests.
In Bolivian Neotropical rainforests, Toledo et al.54 have shown how
species richness and the probability of species occurrence is greatly
determined by climatic conditions, especially rainfall. Moreover,
Esquivel-Muelbert et al.55 showed that water availability is a main
driver of diversity of tree species in the Neotropics, suggesting that
the distribution of many tree taxa is physiologically limited by the
moisture gradient. Our findings show a clear effect of climatic
position on the three facets of diversity, and in addition, we find
that wetter forest communities have higher diversity levels and
have been less impacted by changes in moisture conditions than
drier forest communities. African forests have experienced periods
of pronounced drought during the late twentieth century56 and
climate variability over the Holocene, which may have led them to
developed a historical acclimation to drought and may explain
their more pronounced resilience to current drying trends as
compared with the less climatically variable Amazonian forests.
Central and West African forests have been more severely dis-
turbed by large-scale climatic anomalies throughout the Pleistocene
and the Holocene than other tropical forest regions57. There is
scientific evidence of abrupt changes in climatic conditions and
extreme droughts occurring around 4000 cal year BP across all
West and northern Africa, with important implications for atmo-
spheric dynamics across Africa58. Such abrupt changes in climatic
conditions caused the expansions of open forest, savanna wood-
land and grasslands and the contraction of rainforest in West
Africa with only subsequent development of regenerating forests59.
As forest recovery is a slow process that can go on for several
centuries60, these relatively recent cycles of drought and forest
disturbance may have had a legacy and could be partly determining
the patterns of distribution of functional, taxonomic and phylo-
genetic diversity observed.

In sum, we demonstrate that tropical forests in West Africa
show changes in their facets of diversity partly due to a changing

climate and partly to their dependence on intrinsic soil properties.
Drier forest communities that have experienced stronger
decreases in water availability have undergone functional, taxo-
nomic and phylogenetic diversity homogenisation. Such homo-
genisation process could have negative effects on the current
functioning of such tropical ecosystems and therefore on their
contribution to people’s livelihoods61.

Methods
Study area and vegetation census. We focus on the forest zone of Ghana, West
Africa, which ranges in rainfall from 2000 mm near the southwest coast to around
700 mm near the forest-savanna transition5,62. We obtained vegetation census data
from 28 permanent vegetation plots that are part of the African Tropical Forest
Observation Network (AfriTRON; www.afritron.org)63. The plots were obtained
from the ForestPlots.net database (www.forestplots.net)64. The plots were originally
established by the Forestry Commission of Ghana, which also collected most of the
first vegetation census data, as part of the long-term forest monitoring pro-
gramme65. Most species identifications were carried out by Hawthorne66. We chose
vegetation plots that were measured at least twice, with at least 10 years difference
between the first (from 1980s or early 1990s, first time period—T1) and second
census (2010–2013, second time period—T2). All vegetation plots had an original
size of 1 ha but some of them experienced logging in small portions of their area
after the first census, therefore the disturbed subplots were excluded from the
analysis in both time periods (Supplementary Table 1). The size difference between
plots was accounted in our analysis (see statistical analysis section) and such plots
did not show a different response pattern than un-logged ones. Seven out of the 28
plots experienced anthropogenic fire events and were thus excluded from the
analysis, leading to a total of 21 unique plots used (Fig. 1). The vegetation plots are
distributed across the forest zone encompassing varied climatic conditions: in
general, plots further north towards the forest-savanna transition experience higher
water and VPDs than those in the centre and south of the study area. The study
area has experienced variation in climatic conditions over the last century, with a
strong drying trend and several drought events between the 1970s and 20055. In
each plot, all individuals with a diameter at breast height (DBH) ≥ 10 cm, were
measured and identified to the species (94% period 1 and 93.5% period 2) or
genus level (6.0% and 6.5%, respectively) (n= 11,110 individuals in period 1
from 347 different taxa and 11,309 individuals from 350 taxa in period 2).
Detailed information on the collection, quality and validation of the vegetation
inventories is available in www.forestplots.net and in the AfriTRON site www.
afritron.org.

Functional diversity calculation. We calculated functional trait diversity (FDis)
using in situ collected plant functional traits that are hypothesised to be of
importance for tropical forests to adapt or respond to a drying climate (Supple-
mentary Table 2). We collected plant functional traits during 2015 and 2016 in
Ghana as part of the Global Ecosystems Monitoring TRAIT network campaign
(GEM; www.gem.tropicalforests.ox.ac.uk), named KWAEEMA. The traits collec-
tion was carried out at seven different 1 ha plots across the climatic gradient of the
study area. The trait sampling plots were located in the humid forest zone in
Ankasa National Park (two plots of 1 ha each; latitude: 5.267, longitude: −2.693;
5.2710–2.692), in the semi-deciduous forest zone in Bobiri (two plots of 1 ha each;
6.691, −1.338; 6.704, −1.318) and on the dry forest zone in Kogyae Strict Wildlife
Reserve (three plots of 1 ha each; 7.261, −1.150; 7.302, −1.180; 7.301, −1.164). For
further details on site characteristics, plot biomass, productivity and carbon cycling
of these plots see67. The following traits from the leaf, hydraulics and wood eco-
nomics spectrum were collected: LA:SA, potential stem specific conductivity (kp),
vessel lumen fraction (VLF), vessels diameter (VD), vessel density (pV), leaf area
(AreaL), specific leaf area (SLA), leaf nitrogen(NL) and phosphorus (PL) content,
leaf thickness (ThicknessL), photosynthetic capacity at maximum carbon assim-
ilation rates (Amax) and at light saturated carbon assimilation rates (Asat), adult
maximum height (Heightmax), wood density (WD), phenology, guild and nitrogen
fixing capacity (Supplementary Table 2). For a fuller description on the field trait
sampling see Oliveras et al.68. The GEM traits dataset is the core trait data used in
this study and covered at least 70% of the basal area at the genus level for most
plots (Supplementary Fig. 5). When GEM data were not available for a given
species, this was obtained from the gap filled trait matrix from Aguirre-Gutiérrez
et al.4, who applied a Bayesian gap filling protocol resulting in a robust trait matrix,
for most species in the studied plots, with a root mean square error of 0.16. The
final trait dataset used for subsequent analysis covered above 90% of the basal area
for most plots and traits.

Based on the above-mentioned traits, we calculated the functional diversity
for each sampled vegetation plot and time period (T1 and T2). Plant functional
trait diversity at the plot level was calculated using two metrics, (FDis) and RaoQ27,
which gave similar results (Supplementary Fig. 6). We selected FDis to continue
our analysis because it can handle any number and type of traits, it is not
strongly influenced by outliers and it is unaffected by species richness. Moreover,
FDis has been shown to be relatively insensitive to the effects of under sampling69.
We followed the equation from Laliberté and Legendre27 to calculate the functional
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diversity:

FDis ¼
P

ajzj
P

aj
; ð1Þ

where aj reflects the abundance of species j and zj is the distance of species j to the
weighted centroid c which depicts the centroid of the n species in trait space. The
plant traits were weighted by the relative abundance of each of the species in the
plot in terms of basal area (BA in m2). Thus, FDis summarises the trait diversity
and represents the mean distance in trait space of each species to the centroid of all
species in a given community. All numeric traits were standardised during the FDis
calculation.

Taxonomic diversity calculation. Plant species taxonomic diversity for each
vegetation plot and time period (T1 and T2) was estimated by means of the
Simpson diversity index, which considers the number of species present in a plot
and their abundance28,29. The Simpson index was computed as:

Simpson ¼ 1� ΣPi2; ð2Þ
where Pi denotes the proportion of individuals in the ith species in a community,
with higher Simpson diversity index denoting higher diversity. The Simpson
diversity index is a widely used and robust measure of diversity that accounts for
species richness and number of individuals per species29 and can be directly used to
compare the plant communities of interest. We also calculated the Simpson
diversity as Hill’s numbers, i.e., when q= 2, and accounting for possible diversity
underestimation in highly diverse plots as described in Chao et al.70 using the
iNext71 package in R. We then compared the results to the traditional Simpson
index computed above and obtained similar results (see Supplementary Fig. 1).
Therefore we conducted further analysis with the traditional Simpson
diversity index.

Phylogenetic diversity calculation. Phylogenetic diversity for each vegetation plot
and time period (T1 and T2) was calculated by constructing a phylogenetic tree
using the R20100701 ultrametric tree from Phylomatic30, with branch lengths
adjusted using the default ages file72. Based on the resulting tree we calculated the
mean pairwise phylogenetic distance (MPD), mean nearest taxon distance
(MNTD) and phylogenetic distance (PD)73 to characterise the community-level
phylogenetic diversity. MPD measures the mean PD matrix between communities.
We used a null model based on frequency, which randomised community data
abundances within species, while maintaining the same species occurrence fre-
quency. MNTD, was calculated as the average of the smallest PD for each species to
its closest relative in a given forest community. PD was calculated as the sum of the
phylogenetic branch lengths of co‐occurring species. The three phylogenetic
diversity metrics showed the same pattern of change along the climatic gradient
(milder for PD; Supplementary Fig. 6), therefore we selected only MPD for further
analysis. We carried out the same analysis as above using the phylogenetic tree of
Zanne et al.74 and observed that the phylogenetic diversity values obtained for the
first and second censuses were highly similar to those from the R20100701 ultra-
metric tree (R2= 0.90 and 0.86, respectively), thus we carried out all further
analysis using the results derived from the R20100701 ultrametric tree. We tested if
the above-mentioned functional traits (only for quantitative traits) show phylo-
genetic signal using the Blomberg’s K statistic75 and assessed its significance by
randomising the tree tips 999 times and comparing the resulting values to the
original ones. The K statistic measures the variance of a trait regarding the variance
expected under a Brownian motion model with values of 0 depicting no phylo-
genetic signal and 1 showing strong phylogenetic signal. Phylogenetic signal ana-
lyses were carried in the R platform (v. 3.4.1)76 using the Phylosignal package.

All diversity analyses were carried out in the R platform (v3.4.1)76, using the
‘FD’27, ‘Vegan’77, ‘Picante’78 and ‘Phytools’79 packages.

Climatic and soil data. To investigate the role that climate may play on deter-
mining changes in the three facets of diversity, we gathered gridded data on
potential evapotranspiration (PET in mm), precipitation accumulation (mm) and
VPD from the TerraClimate project80 at a spatial resolution of ~4 × 4 km. Using
the TerraClimate data we calculated the maximum climatological water deficit
(MCWD) following Malhi et al.81, the VPD (Fig. 1) and the Standardised Pre-
cipitation and Evapotranspiration Index (SPEI)82. The MCWD is a metric for
drought intensity and severity and is defined as the most negative value of the
climatological water deficit (CWD) over a year. CWD is defined as precipitation
(P) (mm/month) – PET (mm/month) with a minimum deficit of 0. Then:

MCWD ¼ min CWD1¼CWD12ð Þ: ð3Þ
The SPEI incorporates monthly information on temperature, precipitation and

PET to calculate drought severity based on the drought intensity and duration. We
calculated the SPEI based on a 12-month time window. To characterise the climatic
conditions for each of the two time periods, we used a climatology of 30 years
preceding each vegetation census as follows: for the first period we captured the
climatic metrics during the preceding 30 years of the first census, thus between
1964 and 1993, and for the second census this time window corresponded to the
years between 1984 and 2013. Based on these two time periods we also calculated

the absolute change in the MCWD, SPEI and VPD. Lastly, we calculated the
MCWD, SPEI and VPD for the full term covering 1964–2013. We used a
climatology of 30 years as suggested by the World Meteorological Organization
(WMO) in order to characterise the average weather conditions for a given area
(www.wmo.int/pages/prog/wcp/ccl/faqs.php).

Soil data was collected at the plot level between 2007 and 2013 (Supplementary
Table 3). For further information on soil characteristics and sampling across the
study area see Moore et al.67 and the ForestPlots database (www.forestplots.net).
We used the averaged soil characteristics (Supplementary Table 3) for the first 30
cm depth and carried a principal component analysis using the prcomp function of
the stats package in R76. We used the first three principal component axes as they
explain at least 10% of the variance, the three together explain most variance in the
data (76.2%) and axis four and onwards explain <10% of data variance
(Supplementary Fig. 7). The first PC was mainly loaded by cation exchange
capacity, Mg and soil Nitrogen and is thus referred to as a cations-nitrogen axis; the
second was mainly loaded by the soil pH, Fe and Ca and is thus referred to as an
acidity-calcium axis; the third was mainly loaded by the soil texture characteristics
as percentage of Clay and Sand and is thus referred to as a soil texture axis.

Statistical analysis. We calculated the temporal changes in functional, taxonomic
and phylogenetic diversity at the plot level as the annual rate of change (ΔFDisr,
ΔSimpsonr and ΔMPDr) as to standardise for different time between censuses for
different plots. To this end we subtracted the diversity level of the first time period
(T1) from that of the second time period (T2) and divided the result by the time
between censuses for each vegetation plot.

To investigate if different forests communities (drier vs wetter) differ in their
changes in the three facets of diversity we first we carried out a Bayesian version of
a typical T-test analysis. We grouped the vegetation plots as belonging to the drier
(MCWD in T1 ≤−250 mm) or wetter sites (MCWD >−250 mm) depending on
their MCWD on the recent time period. The MCWD threshold was selected as it
may represent a transition from a tropical wet forest vegetation towards a more
seasonal and savannah like environment as has been shown in recent studies for
the Amazon81 and West Africa4,81 tropical forests. Then using Bayesian
estimation31,32 in a similar way than a T-test for a pair of observations we
investigated if and to what extent the average change in each of the three facets of
diversity in the drier group differed from that of the wetter group. We carried out
the Bayesian estimation using the ‘BEST’ package for R31,32, with normal priors
with mean for µ of 0 and the standard deviation for µ of 10. We used broad
uniform priors for σ, and a shifted-exponential prior for the normality parameter ν.

Subsequently, we modelled the observed rate of changes in each of the three
facets of diversity (ΔFDisr, ΔSimpsonr and ΔMPDr) as a function of the climatic
variables specified above and soil characteristics (three first PCA axes). As some
plots were smaller than 1 ha (Supplementary Table 1) we included plot size as a
covariate in the statistical models to account for its possible effect in the observed
changes in the three facets of diversity. We modelled the changes in the three facets
of diversity using linear models with a Gaussian error structure under a Bayesian
framework. To prevent model over parameterisation and overfitting we first
calculated the Pearson’s correlation coefficients between the climatic and soil
variables and from each pair of those with correlation values |>0.7| we selected the
most ecologically meaningful for our study and excluded the other. With this
procedure we avoided distorting model coefficients in the modelling stage83. After
correlation analysis the selected climatic and soil variables used in further analysis
were the full-term MCWD (MCWDFull), its absolute change (ΔMCWDAbs) and the
absolute change in ΔVPDAbs and the three PC soil axes (Supplementary Table 3).
The statistical models were run with normal diffuse priors with mean 0 and
2.5 standard deviation for coefficients and 10 standard deviation for the intercept,
three chains and 2000 iterations. We started with a model that included all
environmental variables, under the hypothesis that both climate and soil play a role
on the distribution of plant traits22,84. From this initial full model, we constructed a
series of simpler models that included interactions between climatic and soil
covariates (35 models in total; Supplementary Table 4). Based on leave-one-out
cross-validation (LOO) we selected the model (best model) with the lowest LOOIC
(LOO Information Criterion) score and highest expected log predictive density
difference85. We computed the highest density intervals (HDI) rendering the range
containing the 89% most probable effect values as suggested in Makowski et al.86

and calculated the ROPE values using such HDI. Although the 95% HDI was not
used as this range has been shown to be unstable with ESS < 10,000 (effective
sample size)32 we also present it together with the 50% HDI as to give a more
complete description of the data. We calculated the region of practical equivalence
(ROPE)87 to test the importance of parameters, where if the ROPE is 0 or close to 0
it gives strong indication of the important effect that a given explanatory variable
has on the response variable. In the results section we discuss the results based on
the first best model obtained and give details of all models in the Supplementary
information (Supplementary Table 6). All environmental variables were scaled and
centred prior to model fitting. We conducted all statistical analysis in R (v. 3.4.1)76

using the, ‘BEST’88, ‘rstanarm’89, ‘loo’90 and ‘bayestestR’86 packages.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The vegetation census and plant functional traits data that support the findings of this
study are available from their sources (www.ForestPlots.net and gem.tropicalforests.ox.
ac.uk/). The processed community-level data used in this study is available in the
following repository: https://doi.org/10.6084/m9.figshare.12251378.
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