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Terrestrial laser scanning (TLS) is providing exciting new ways to quantify
tree and forest structure, particularly above-ground biomass (AGB). We
show how TLS can address some of the key uncertainties and limitations
of current approaches to estimating AGB based on empirical allometric scal-
ing equations (ASEs) that underpin all large-scale estimates of AGB. TLS
provides extremely detailed non-destructive measurements of tree form
independent of tree size and shape. We show examples of three-dimensional
(3D) TLS measurements from various tropical and temperate forests and
describe how the resulting TLS point clouds can be used to produce quan-
titative 3D models of branch and trunk size, shape and distribution. These
models can drastically improve estimates of AGB, provide new, improved
large-scale ASEs, and deliver insights into a range of fundamental tree prop-
erties related to structure. Large quantities of detailed measurements of
individual 3D tree structure also have the potential to open new and exciting
avenues of research in areas where difficulties of measurement have until
now prevented statistical approaches to detecting and understanding under-
lying patterns of scaling, form and function. We discuss these opportunities
and some of the challenges that remain to be overcome to enable wider
adoption of TLS methods.

1. Introduction

In the century since the publication of D’Arcy Wentworth Thompson’s classic
text On Growth and Form [1] measurements of organism size, mass and form
have become central to quantitative ecology. In the case of trees, the size of
an individual, its above- and below-ground biomass, and the relationships
between them, or allometry, are key properties of interest. The biomass rep-
resents the accumulated productivity of the tree in terms of stored carbon (C)
and, as a result, quantifying above-ground biomass (AGB) of trees on large scales
is vital in order to estimate C stocks and fluxes resulting from deforestation,
degradation and regeneration [2].

Estimating the total mass of C stored in a tree requires measuring both the
above- and below-ground (root) biomasses, via harvest and weighing. Measur-
ing either of these two masses is difficult, time-consuming and expensive in
practice, as well as being, by definition, destructive. AGB is the more widely
measured! property [3,4], in large part, due to the relative ‘ease’ of measure-
ment compared with the below-ground component. Below-ground biomass is
extremely difficult to measure and as a result tends to be poorly quantified,
inferred as it is from proxy observations and models, calibrated and validated
using very limited samples of real biomass [5]. Direct measurement of AGB also
requires destructive harvesting [6], and the difficulty of achieving this increases
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in remote or inaccessible regions, particularly large parts of
the tropics. Destructive harvesting also precludes repeat
measurements to capture dynamics, is often undesirable in
the case of endangered, old growth or arboretum specimen
trees, or may be prohibited outright in protected areas. Con-
sequently, estimates of AGB at the tree and plot scale rely, by
necessity, on indirect methods, namely empirical size-to-mass
allometric scaling equations (ASEs) [6-11]. ASEs are based
on compilations of destructive harvest measurements made
of relatively few, mostly smaller trees. Trees are very often
selected for harvest by loggers and so are rarely selected sys-
tematically with the resulting ASE derivation in mind
[6,12,13]. This results in ASEs which have potentially large
and unknown bias [14-16].

Estimating AGB accurately is critical for several reasons
[17,18]. First, it forms the basis of estimates of the largest terres-
trial C stocks and fluxes [2,9,19,20]. Forests hold 70-90% of
terrestrial above- and below-ground biomass [21], but esti-
mates of the amount and distribution of this biomass are
based on a small number of poorly distributed samples,
poorly distributed spatially and with potentially large biases.
These uncertainties arise due to, inter alia, undersampling of
the species-rich tropics in comparison with temperate and
boreal region [22,23]; lack of harvest measurements of large
trees [6,24]; and the form of the ASEs used to predict AGB
[13,22,25]. The terrestrial carbon sink, the residual of the net
gains and losses between the biosphere and atmosphere, has
increased over the last two decades [20], but the measurement
uncertainties mean that the magnitude, location and causes of
this residual terrestrial sink are still not well quantified [21].

Second, large differences arise between estimates of both
AGB stocks and consequent deforestation fluxes, particularly
in magnitude, but also location [17,23,26—29]. Some of these
discrepancies are attributable to definitional and methodologi-
cal differences [19], but much uncertainty remains, particularly
over spatial distribution of the residual terrestrial sink [17].

Third, AGB is a key component of terrestrial ecosystem
function, as part of the more general energy, nutrient and
hydrological cycles. Estimates of AGB are required to test
land surface process models (LSMs) which predict (or are
calibrated against observed) AGB, as part of understanding
and forecasting ecosystem processes [30,31].

Finally, accurate (or at least precise) estimates of AGB
with quantified uncertainty underpin international efforts
to mitigate impacts of climate change [32]. Forests are ear-
marked to provide one-quarter of planned greenhouse gas
emission reductions under the United Nations Paris Agree-
ment on Climate Change [33,34]. Current discrepancies in
terms of tropical forest biomass alone are as much as 45.2 Gt
C, valued at US$1 trillion [35,36].

2. Measuring above-ground biomass

Since the early 1980s, significant advances have been made
in estimating forest AGB, particularly from remote sensing.
These have been used to augment standard forest inventory
approaches, primarily aimed at estimating merchantable
timber quality. Forestry estimates of AGB typically involve
manual plot-level measurements of diameter-at-breast
height (DBH), which are then converted to AGB (or timber
mass) via allometry and then upscaled via forest area
[37,38]. These methods are relatively easy to make, repeatable

and transferrable; uncertainty arises due to the allometry and n

upscaling process. Remote sensing has allowed wide-scale,
accurate estimation of forest cover change [39], which can
be converted to C gains/losses via inventory data on C den-
sity [33,40]. The advent of airborne and spaceborne lidar has
allowed allometric estimates of AGB derived from canopy
height and density metrics [19,26,27,41,42].

However, all these methods are indirect: they rely on
extrapolating very limited harvest AGB data via some com-
bination of forest cover, C density and height/diameter
allometry. The often very different assumptions, on which
these indirect estimates are based, lead to the following pro-
blems: (i) they are very hard to validate in any meaningful
way [16]; (i) it is difficult to compare them, or to reconcile
differences when they are compared [28,29]; (iii) uncertainties
are poorly quantified or even unknown [16]. Terrestrial laser
scanning (TLS) has the capability to address these problems,
by providing tree- and plot-level AGB estimates which are
independent of allometry, unbiased in terms of tree size
distributions and with well-quantified uncertainty. TLS esti-
mates collected widely and reliably can reduce current
uncertainties in terrestrial C stocks, enable improved cali-
bration and validation of AGB products, particularly from
remote sensing, and form the basis of improved allometric
models. Here, we describe key developments in the use of
TLS to estimate AGB, present analysis of uncertainties that
should be addressed, and highlight challenges that remain.

3. Terrestrial laser scanning-derived estimates of
above-ground biomass

Data used for analysis are deposited in the dryad database
(http://dx.doi.org/10.5061/dryad.02dq2) [43]. The TLS data
underlying the three-dimensional (3D) models presented
here were all collected using a Riegl VZ-400 TLS instrument,
following protocols developed using the experience gained
during various field campaigns in the tropics and elsewhere.
In general, 1 ha plots were scanned on 10 or 20 m grids, with
individual scans co-registered via static reflectance targets
into a single large point cloud for each 1 ha plot. These methods
are described in detail in [44-50]. The Riegl instrument is
towards the upper end of the cost for TLS (in the £75-150 K
range depending on model and accessories), with a range of
approximately 700 m and a pointing accuracy of millimetres
at that range, as well as waveform capabilities. An increasingly
wide range of TLS instruments are now available, costing
from approximately £10 K upwards, with increased cost gen-
erally corresponding to increased range and potentially also
accuracy (but also reduced size, robustness, increased func-
tionality etc.). The advantages and disadvantages of some
of these various systems are discussed in [47] and [48].

3.1. Information content of terrestrial laser scanning
data

Figures 1-3 show examples of the rich information content of
TLS data. Figure 1 shows a 70 x 5 m transect through a larger
forest plot scanned in Ghana, West Africa. Figure 2 shows 1 ha
of TLS data collected in Wytham Woods, near Oxford, UK
(http://www.wytham.ox.ac.uk/), an extensively studied
area of deciduous woodland. These data are part of a larger
6 ha region scanned in leaf-on and leaf-off conditions during
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Figure 1. 70 x 5 m transect of TLS data collected in Ankasa, Ghana, March 2016, with points coloured by height. The data are from a 70 x 100 m plot which was
scanned with two Riegl VZ-400 TLS instruments, using a 10 m grid spacing between scan locations as described in [48]. The plot contained 270 trees with DBH
greater than 10 cm, with TLS-estimated AGB of 234 tons (or approx. 334 t ha™").
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Figure 2. Terrestrial laser scanner data from deciduous woodland, Wytham Woods, UK, showing separate tree point clouds, and example trees used in the analysis
below. (a) Plan view of 1 ha TLS point cloud. The extracted point cloud of each tree is coloured separately. The sycamore (Acer pseudoplatanus, left) and ash
(Fraxinus excelsior, right) trees analysed below are circled. (b) Oblique view, with the sycamore and ash trees again circled.

2015 and 2016, as far as we know the largest single area
scanned with TLS in this detail [44,45]. Figure 3 shows point
clouds of two individual trees extracted from larger,
plot-scale point clouds collected in two contrasting forest
environments: tropical rainforest in Brazil and Wytham
Woods. It is notable that the sycamore tree (Acer pseudoplata-
nus) in the latter case has an extraordinary 10.8 km of
branch material! This is more than double that of the tropical
tree, which is 25 m taller. The two trees have broadly compar-
able volumes despite their different height and shape,
but their resulting AGB will depend on wood density, p (dis-
cussed below). These figures highlight both the extraordinary
diversity of tree form and the ability of the TLS data to capture
and quantify this diversity, not just for estimating AGB but
also to address fundamental questions about the relationship
between tree form and function [51,52].

3.2. Three-dimensional tree structure and volume from
terrestrial laser scanning

We outline some of the key uncertainties in TLS-derived esti-
mates of AGB below. The approach we focus on here is that

of quantitative structural models (QSMs) [53-58]. Various
other approaches to estimating the volume of tree com-
ponents also exist, notably focusing on the main trunk, or
volume-based fitting to the trunk and crown as a single geo-
metric shape [59,60]. These methods have generally been
developed for forestry applications, for lidar instruments
with range less than a few tens of metres, or for single-scan
acquisition, ie. where co-registration of multiple TLS
acquisitions is either not feasible or not desirable [60]. For-
estry-based TLS approaches are reviewed by Thies et al. [59]
and Niklas [61]. However, QSMs are currently the most accu-
rate way to estimate tree volume, AGB and structure [25,59].

Prior to applying any volume-extraction algorithm, mul-
tiple individual scans, either around a single tree or
through a larger area, need to be accurately co-registered
and merged into a single point cloud [46]. Following this,
the QSM approach relies on fitting geometric primitives
such as cylinders, or even a tessellated mesh surface, to the
lidar point cloud of a single tree, to obtain a closed volume
of 3D tree structure. This process encompasses various pos-
sible stages and assumptions [49,50,53-58]. Figure 4 shows
the progression of a tree from a point cloud, through three
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Figure 3. (a) Caxiuana hardwood scanned leaf-on, 2013. (b) Wytham sycamore, scanned leaf-off (downsampled to 0.026 m point spacing), 2015. In each case the
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Figure 4. TLS point cloud of a single tree, scanned leaf-off (), and three instances of fitting a QSM to the cloud (b—d), using the approach of Raumonen et al.
[53]. Each QSM uses the same parameters, but a different starting seed value, resulting in slightly different reconstructions in each case. The colours represent the

branching order within the model.

iterations of QSM fitting using the approach of Raumonen
et al. [53] modified by Burt [50].

The resulting QSMs provide topologically connected,
enclosed volumes [49,50,53—-58] comprising the volume of
all individual trunk and branch components. The size, pos-
ition, orientation and ordering of branches (parent—child

distributions) is key information for many ecological appli-
cations, particularly testing predictions of metabolic scaling
theory [51,61-64]. Here, we focus on some of the uncertain-
ties and challenges in using TLS-derived QSMs for
estimating AGB and suggest possible developments and
strategies to address some of these uncertainties.
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3.3. Quantitative structural model volume uncertainty

Uncertainty in QSM volume arises broadly from limitations
of the TLS measurements and inherent uncertainty of the
QSM reconstruction process. Branches of similar diameter
(or smaller) to the TLS footprint at a given distance are not
generally resolved in sufficient detail to be reconstructed
accurately. This occurs more frequently higher in the canopy,
where occlusion is exacerbated by higher cover and by the
larger distance from the instrument. TLS pulses reaching
the uppermost part of the canopy do so with larger footprint,
depending on the instrument beam divergence. For the cur-
rent commercial TLS instruments (e.g. Riegl http://www.
riegl.com/products/terrestrial-scanning/, Leica http://leica-
geosystems.com/en-gb /products/laser-scanners, Faro http://
www.faro.com/products/3d-surveying/laser-scanner-faro-
focus-3d/overview) the footprint is of the order of 2—5 cm at
100 m and hence branches of less than approximately 5cm
diameter will be poorly resolved at this distance. This results
in greater uncertainty in estimated volume, albeit only for a
small fraction of the total ([49]; note that 80% of AGB in
their study is contained in the lower 60% of plot height).
Other uncertainties inherent in TLS data include: wind dis-
turbance, a random error which is minimized by scanning
during calm conditions wherever possible; and co-registration
accuracy. The latter is determined by the instrument properties
and by the ability with which specific targets or features can be
identified in multiple scans. With care, co-registration accuracy
can be close to the range accuracy (4 mm) of the instrument
over 1 ha [46].

The inherent uncertainty of QSM reconstruction can be
further sub-divided into a stochastic component, arising from
the need for non-deterministic numerical procedures for fit-
ting shapes, lines etc. to regions of the point cloud, and a
systematic component arising from the assumptions under-
lying a particular QSM approach. For example, the use of
cylinders as geometric primitives may lead to volume over-
estimation due to localized branch tapering [59]. These
errors tend to increase in a relative sense with decreasing
branch size, but the resulting impact on absolute volume
(and AGB) decreases correspondingly with branch size.

There are also choices of parameters to be made during
reconstruction, particularly the size of region that geometric
objects are fitted to—d i, the diameter of the patch used to
fit to a point cloud region in the TreeQSM? [53,55]. In addition,
the point cloud is partitioned into regions in random order, so
QSM volume varies even for a fixed parameter set, and a
given QSM should therefore be viewed as a sample from a
distribution of possible volumes (as illustrated in figure 4).
In practice, QSM generation is generally carried out multiple
times for a given tree point cloud to provide a final volume
estimate with an associated estimate of uncertainty [25,50].

3.4. Irregularity of tree form

Uncertainty in allometric estimates of AGB arises (in part)
from the fact that many trees have irregular, hollow or
damaged trunks, or feature buttressed trunks, particularly
in large tropical trees [65—67]. Buttresses may be accounted
for implicitly in ASEs through inclusion in harvest data [67]
or explicitly by considering trunk form, but the resulting
ASEs provide only unbiased biomass predictions for forests
with a similar proportion of buttressed trees to those sampled.
Corrections have been proposed to account for the impacts of

buttressed trees in ASEs [65,67,68], but these rely, in turn, on
destructive harvesting of an even more uncertain population
(irregular trees).

Trees with irregular trunk shape and form also affect the
accuracy of AGB estimation via QSM reconstruction. But-
tressed trunks tend to be far from cylindrical, at least close
to the ground, potentially with significant biomass in this
lower portion. Examples of this can be seen in figures 1
and 3. QSM fitting assumes (in general) that cylindrical sec-
tions can be fitted around the TLS point clouds. However,
QSM reconstruction is also possible using mesh grids to fit
an enclosing surface to an arbitrarily defined lower part of
the trunk point cloud. Below, we compare the volume of
some complex tree trunk shapes estimated using a closed tri-
angulation surface model with volumes estimated from
TreeQSM cylinder fitting.

The triangulation approach developed from Raumonen
et al. [53] fits curves made of short line segments to thin hori-
zontal sections of the TLS data. Figure 5 shows TLS points
from a trunk with an exaggerated buttress, along with an
example cross-section fitted with line segments. These curves
model the cross-sections of the trunk, and the vertices of the
curves in successive layers are then connected systematically
to form a continuous triangulated surface. Finally, the top
and bottom planes are triangulated to close the model.
Initially, a horizontal cut plane is selected manually from the
TLS data and the points below the plane are used for the tri-
angulation. The level of the cut plane is arbitrary, but could
be selected (for example) where the trunk cross-section is
approximately circular, where the stem bifurcates into many
large branches, or above a buttressed root system. In the
large Wytham Woods sycamore, in figure 3, for example, the
stem bifurcates near the ground, so the triangulated part is
small compared with the whole tree/stem; this part may be
much larger in other species and/or environments.

Once the first cross-section curve is defined, further cross-
section curves are defined based on the previous curve,
assuming successive cross-sections differ only slightly each
time (figure 6a). Thus, the previous curve is translated verti-
cally to the same level as the next cross-section and its
vertices partition the points of the sections into the same
number of disc-like neighbourhoods, whose means define
the new vertices (figure 6b). This process of defining new
cross-section curves stops when there are no more points in
the point cloud, or when most of the vertices in the curve
are translated vertices from the above curve, or there is a
self-crossing curve. Delaunay triangulation is used on the
top and bottom planes to close the model. Figure 6 shows
the example trees extracted from the Wytham Woods data
in figure 2; figures 7 and 8 show the final triangulation model.

Volume is computed from the final triangulation model
using the divergence theorem, which requires the outward sur-
face normal and area of each triangle. We compared the volumes
of the triangulation model and QSM-derived stem cylinder for
five trees from the Wytham Woods data in figure 6. The results
are shown in table 1. The resulting triangulated mesh volumes
are compared with their QSM cylinder-fitted counterparts,
and the difference is shown relative to the full QSM tree
volume in each case. For the lower trunk, differences could be
as high as 45% (tree 1009), but because of under- and over-
estimation between trees, the total difference over five trees
was only 7.5%. Trunk volume differences compared with total
QSM tree volume ranged from 0.2% to 1.6%.
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Figure 5. Generation of a new cross-section curve based on the previous curve. (a) Partition of the section based on previous vertices (red). (b) New curve (green)

formed as averages of partition points.

Errorsinallometric AGB for buttressed trees occur due to the
limitations in the allometric data and variations in trunk form,
but also because DBH measurements for these trees have to be
made above the buttresses and hence do not represent ‘true’
DBH. Above-buttress measurements are typically noted in
manual surveys, and empirical correction factors may be
applied post facto where appropriate. These errors are avoided
in the TLS approach, and so TLS measurements of buttressed
trees could be used to correct existing ASEs and to characterize
the number (and size) of buttressed trees in sample plots. This
would allow existing ASEs to better represent the allometry of
buttressed and irregular trees and reduce uncertainty in the
resulting AGB estimates at large scales.

3.5. Separating leaf and wood in terrestrial laser
scanning point clouds

Another important uncertainty in TLS-derived estimates of
AGB is that these methods typically require wood-only points
(although QSM fitting has been done leaf-on with small
leaves, e.g. [49]). However, many other properties we might
derive from TLS require both leaf and wood returns. Methods
to quantify biophysical forest properties such as gap fraction,
plant or leaf area index (PAI, LAI) etc. usually focus on either
wood or leaf components [69,70]. Separating these components
in TLS data is an ongoing challenge [56,71,72]. Two broad
approaches have emerged: (i) methods exploiting differences
in the return intensity of the signal and (ii) methods based on
geometrical descriptors of the point cloud, i.e. assuming some
a priori knowledge of how leaves and branches are co-located
in 3D space. A somewhat different third approach uses volu-
metric estimates of leaf area density [73-75]. We differentiate
this approach due to the slightly different interpretation of the
resulting volumetric rather than explicit 3D leaf/wood area.
Various authors have proposed using dual- or multi-
wavelength lidar [71,76-78] to exploit different material

reflectance at different wavelengths. In practice, the widely
varying orientation of canopy objects and partial lidar hits
may overwhelm these differences. While leaf/wood separ-
ation methods based on multispectral lidar intensities are
potentially promising, there are still many practical difficul-
ties to overcome, not least calibration to provide physically
meaningful return intensity values [79].

The second approach to leaf/wood separation is based on
analysing the geometric properties of the point cloud and
then classifying point clouds into their constituent materials
based on geometric descriptors [72,80,81]. These methods
differ from the more instrument-specific or intensity-driven
approaches, in that they rely on machine learning algorithms
to assign points to leaf and wood/other classes based on
location in relation to other points and canopy elements, or
clustering according to the point cloud structure [82]. These
various methods have shown promise and are potentially
applicable to virtually any tree point cloud. The chief draw-
back is the (typical) requirement for manual input to filter
individual point clouds, which is impractical for processing
large numbers (hundreds or thousands) of trees.

Figure 9 shows results from applying a leaf/wood separ-
ation algorithm developed by Boni Vicari [82]° from the
method of [80] and [81]. The algorithm uses a shortest path
approach to detect the trunk and larger branches, following
which an unsupervised classification is applied to the
remaining points. This is based on 3D geometric descriptors
calculated using the nearest neighbours of each point and
then applying Gaussian mixture models with an expec-
tation/maximization algorithm. The results in figure 9 are
from trees of varying leaf and branch properties collected in
very different environments. While the separation examples
certainly look plausible (and initial tests suggest they are),
this illustrates one of the key limitations of many of the
methods used to estimate tree and forest structural and
biophysical parameters: the problem of validation.
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(d)

Figure 6. Trees used in the analysis of volume uncertainty in cylinder fitting. All trees are sycamore (Acer pseudoplatanus) from Wytham Wood. The height, DBH,
branch length, volume and AGB of the resulting QSMs derived from these are given in each case (using p taken from http:/www.wood-database.com/sycamore-
maple/) are as follows. (a) 1009: H 21.2 m, DBH 0.22 m, Lyanch 680 m, Vige 1550 1, AGB 0.95 t. (b) 213: H 24.9 m, DBH 0.49 m, Lprancy 1350 m, Vior 4600 I, AGB
2.83 1. (c) 138: H23.5 m, D 0.47 m, Lpyanen 1000 m, Vyg 4200 1, AGB 2.57 t. (d) 1570: H 25.8 m, D 0.47 m, Lyjaney 760 m, Vi 2890 I, AGB 1.77 t. (e) 255: H 26.3 m,

D 0.53 M, Lyanch 2600 M, Vior 83701, AGB 5.15 t.

3.6. Validation

True ‘“validation’ of estimates of tree properties (such as volume,
AGB and leaf/wood material no matter how they are derived)
can be achieved only by destructive sampling. As outlined
above, this is either too expensive and time-consuming or is
simply not possible or desirable. The problem of validating
wood and crown volume estimates from TLS has been noted
[84,85]. True validation of TLS-derived AGB (or allometric for
that matter) requires measurement of the volume of trees that

have been scanned and reconstructed. This implies destructive
harvesting and measuring of wood volume and/or mass (wet
and dry). Lack of destructive harvest data is perhaps the largest
uncertainty in ASEs [6,12—-14]. It is also why validating volume
reconstruction has often been limited to a combination of
internal consistency checks and visual inspection [57,84,85].
Very few studies have compared destructive harvest
volumes/AGB directly with QSM-derived estimates from TLS.
The two most comprehensive comparisons, comprising 95
trees in total from temperate eucalypt [49] and tropical forest
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Figure 7. Generation of triangulation from the cross-section curves. (a) Side triangles reconstructed from successive curves. (b) Bottom plane.
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Figure 8. Final triangulation model from side (a) and top (b).

[25], found that TLS-derived estimates of AGB agreed with
harvested AGB with r*> 0.97.

The same difficulty of validation arises for leaf/wood
separation algorithms: lack of harvest data makes validation
near impossible, so how can we validate a particular algor-
ithm? Deciduous woodland presents one very effective
way, by allowing TLS scans made at the same locations
under leaf-on and leaf-off conditions to be compared [44,45].
However, this approach is time-consuming in its own right,
requiring precise comparison of scans across seasons, when
other changes may also occur in the interim. It is also limited,
by definition, to deciduous woodlands.

Another validation strategy, not just for volume and AGB,
but also leaf /wood separation, is the use of highly detailed 3D
tree structural models [86—88]. 3D radiative transfer (RT)
models have been developed to produce very accurate

(b)

127.8

127.6

127.4

127.2

127.0

126.8

simulated TLS point clouds from 3D structural models. Arbi-
trary reconstruction models or leaf/wood separation methods
can then be applied to the simulated point clouds and the
results can be validated accurately, given that the 3D tree struc-
tural details are specified a priori [53,56—58,85,89,90]. Boni
Vicari [82] has developed a generic testing framework to
allow leaf/wood separation algorithms in this way, available
from Boni Vicari [83]. The 3D RT approach can also be used
to explore arbitrary TLS instrument properties and data collec-
tion protocols [46]. This type of approach has been used to help
extend the QSM approach to explore how leaves and needles
might be added to QSMs in a realistic way [56].

The drawback of the 3D RT model approach to ‘vali-
dation” of TLS reconstruction is that the issue then arises of
how realistic the driving 3D structural models are. However,
as more high-quality TLS data are collected and used to
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(d)

Figure 9. Examples of leaf/wood separation algorithm applied to trees of varying type, using the framework developed by Boni Vicari [82,83]. (a—c) A single ash
tree from Wytham Woods [45,46]: (a) leaf and wood material; (b) leaf points only; (c) wood points only. (d,e) Individual trees with leaf (green) and wood (brown)
material separated: (d) tropical hardwood (sp. unknown) from Nouragues, French Guiana [15]; (e) eucalypt (Eucalyptus leucoxylon), from Rushworth forest, Victoria,
Australia [51].

Table 1. Volume in litres of lower trunk/root sections calculated from triangulation (Vi;) and QSM cylinder fitting (V) with 20 in each case; the absolute
difference between the two estimates; and the relative difference as a fraction of QSM volume, Vi

tree Vei (1) 20 (1) I/:yl (U} 20 (1) chl,tot U} 20 (I) Vei— chl (U} Vei— chI/ llcyl,tot (%)

1009 63.5 25 348 58 1784 89 28.7 1.6

213 262.7 16.4 2744 327 4606 153 —1.7 —03

138 2958 6.6 2878 45.2 4138 101 8 0.2

1570 156.7 39 1386 6.1 2882 107 18.1 0.6

255 496 40.4 634.4 68.8 8632 484 —1384 —16
generate (validated) QSMs, the more feasible it becomes to circularity, i.e. not testing a 3D reconstruction approach
use these as inputs for the 3D RT model simulation and using a simulated point cloud derived from the same, or

QSM testing. A caveat is that care must be taken to avoid similar, 3D reconstruction method.
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3.7. Terrestrial laser scanning and allometric scaling

equations

Empirical ASEs are currently the only way to extrapolate plot-
scale tree measurements to larger areas. These range from
locally calibrated or species-specific ASEs to those used for
pan-tropical AGB estimates from remote sensing [6,10,11].
Uncertainty in the resulting AGB estimates arises, in large
part, because the ASEs are used to extrapolate small samples
of destructively harvested trees to a range of forest types, and,
crucially, trees with larger diameter that are poorly sampled
in the harvest data. This can lead to large out-of-sample extra-
polation errors [50]. A meta-analysis by Sileshi [13] of over
600 published ASEs showed that 60% were derived from
samples of fewer than 30 trees, only 20% contained samples
of more than 50 trees, and uncertainty was rarely considered
[16,91,92]. Sampling bias was also apparent in the broad
genera of trees harvested for ASEs, i.e. oversampling of
dipterocarps (smaller crown/DBH) versus legumes (larger
crown/DBH).

This lack of large trees in allometric samples leads to large
uncertainties in AGB, due to the disproportionate biomass of
large trees [6]. This problem is compounded because the distri-
bution of large tree AGB is heteroscedastic, i.e. trees exhibit
increasing variation in AGB with increasing diameter [93].
This implies that minimizing ASE uncertainty requires more
destructive samples of larger trees than smaller ones; in prac-
tice, the opposite is the case. TLS can address this limitation by
providing volume estimates across all sizes, without size bias.
TLS can also provide accurate H for all trees, unlike census-
based measurements, meaning that TLS-derived ASEs ought
to be robust to variations in canopy DBH : H. Recent work
shows that the size bias in pan-tropical ASEs, for example,
can be overcome using TLS measurements [15].

An additional, important uncertainty in allometric esti-
mates of AGB is wood density, p. p varies both within and
between species and/or region [14,94-97] as well as radially
and with height in individual trees. Intra- and interspecific
differences in p arise in part because it is a strong determinant
of mechanical support [98], but also due to differences in
environmental and evolutionary strategies, or phylogeny
[99-101]. Variations of p (and their treatment in ASEs) have
been proposed as an explanation for the large observed
differences between pan-tropical AGB estimates [28,29].
While TLS measurements cannot address p variation directly,
TLS-derived QSMs can be used to quantify the sensitivity of
AGB estimates to variations in p, by varying p as a function of
height, branching order and branch radius within a QSM.

3.8. Uncertainty in allometric model form

Limitations in allometric data lead to uncertainties in ASEs
which are poorly characterized [16,102,103]. ASE form is
also a major determinant of the resulting uncertainty (and
bias) of AGB estimates, but is also poorly understood and
often overlooked [6,7,13,104]. ASE models are mostly fitted
by log-transformed ordinary least-squares regression, which
relies on the assumptions of homoscedasticity and normality
in the underlying data [93]. Given that measured allometric
data rarely if ever conform to these assumptions, this log-
transformation is another potential source of uncertainty,
particularly systematic bias. Recent work has shown how
uncertainty in allometric estimates of AGB grows rapidly

with tree size due to these ASE modelling assumptions m

[15,50]. Once again, this is an area where TLS can prove
invaluable, by providing many more samples of tree-level
AGB, with well-quantified uncertainty, particularly from
larger trees. Crucially, the resulting TLS estimates of AGB
are independent of allometric models.

3.9. Conclusion: challenges and opportunities

New TLS-derived measurements of 3D structure have the
capability to transform estimates of AGB. TLS measurements
can address key uncertainties in allometric estimates of
AGB, particularly tree shape, size bias in allometric samples,
and enable better quantification of errors due to wood density
p and ASE model form. The independence of TLS-derived
AGB estimates from allometry is a huge benefit in this
regard. TLS data also provide accurate estimates of tree
height H, which are needed for improved calibration and
validation of remote sensing estimates of AGB, which rely
almost exclusively on H-based allometries of one form or
another.

If the accuracy of TLS-derived estimates of AGB is
demonstrated across a wide range of tree species and forest
types, they are likely to become invaluable for improved
monitoring of C stocks and fluxes. This is particularly
important for international forest monitoring and protection
agreements [33,34]. TLS-derived estimates of AGB can poten-
tially revolutionize our understanding of C stocks and fluxes
in the tropics [15]. Acceptance of TLS measurements for wider
monitoring strategies will require additional destructive har-
vesting of scanned trees across multiple biomes, as well as
much wider availability of TLS tools and methods that are
more readily accessible to forestry and field researchers. Per-
haps even more important is the need for corresponding
developments in training and education.

A note of caution is also required. TLS methods cannot
replace empirical allometric methods, particularly remote
sensing measurements. The requirements of time and man-
power mean that, currently, TLS collection is only really
feasible at the same sort of scale as field-based survey/
census measurements. A single hectare plot takes 3-6
person days to scan at high detail (depending on terrain
and instrument properties and accuracy requirements), i.e.
around the same time as a typical field census survey. How-
ever, processing the TLS data into useful quantitative structural
information for AGB estimates etc. requires the same or more
time, for co-registration, tree extraction and QSM reconstruction
[46]. An important part of this process is that traceability of
uncertainty in the resulting QSM reconstruction can be
included in the processing chain.

This whole process depends on access to expensive
capital equipment (the lidar instruments themselves),
deployment costs, high levels of expertise, significant com-
puting power and potentially expensive software. As a
result, these methods are currently out of reach for many
researchers. The advent of smaller, lower-cost TLS instru-
ments show a lot of promise [105], although their use for
the accurate 3D forest measurement required for QSM
methods has yet to be validated (with destructive sampling)
given their typically much lower range and precision.
Increased availability of TLS data of all kinds, as well as
the proliferation of point clouds from unmanned aerial
vehicles and shape-from-motion techniques is leading to the
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development of new, open source software tools. This will
facilitate wider access to TLS modelling [106-108]. If
measurement protocols can be standardized, this will also
increase the uptake of TLS for AGB and other applications
[46].

Finally, reliable TLS measurements of 3D tree structure
can provide advances far beyond just AGB [52,109]. In
terms of biomass, below-ground measurements of tree roots
are much harder again to make than even above-ground
measurements. Initial work has shown that it is feasible to
make TLS-derived estimates of below-ground biomass in
much the same way as for AGB, but at significant extra
effort [110,111]. More generally, TLS is providing new 3D
structural measurements for exploration of tree structure
form and function at a fundamental level. Large quantities
of TLS data of individual 3D tree structure will open new
and exciting avenues of research in areas where the difficulty
of measurement has until now prevented large-scale statisti-
cal approaches to detecting and understanding underlying
patterns of scaling, form and function [52].

Data accessibility. This article has no additional data.

Authors’ contributions. M.LD. conceived the paper and the analysis and
wrote the manuscript with input/comment from all authors;
M.ID., AB,K.C., SLL.and P.W. collected, processed and contribu-
ted data; M.B.V. contributed leaf/wood separation code and analysis,

and algorithm testing framework; P.R. contributed TreeQSM model
code and trunk analysis.

Competing interests. We declare we have no competing interests.
Funding. M.LD. and P.W. acknowledge NERC NCEO support for
travel and capital funding for lidar equipment. M.1.D. was supported,
in part, by NERC Standard Grants NE/N00373X/1 and NE/
P011780/1, the CNRS Nouragues Travel Grants Program, ESA BIO-
MASS calibration/validation funding, NERC GREENHOUSE NE/
K002554 /1, European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 640176 for the EU H2020
BACI project. A.B. was supported by an NERC CASE PhD student-
ship with EADS Astrium (NE/J016926/1). M.B.V. is funded via a
Science without Borders scholarship from the National Council of
Technological and Scientific Development—Brazil (Process number
233849/2014-9). K.C. acknowledges support from the Metrology for
Earth Observation and Climate Project (MetEOC-2) within the Euro-
pean Metrology Research Programme (EMRP) funded by the EMRP
participating countries within EURAMET and the European Union
under grant no. ENV55.

Endnotes

'In a direct sense. Below-ground biomass is even harder to measure
than AGB (and hence less frequently done), requiring huge manual
effort to expose and remove potentially very large root systems.
2The TreeQSM code is available via Github (https://github.com/
InverseTampere/TreeQSM), and from the author Dr Pasi Raumonen
(pasi.raumonen@tut.fi).

3Code available via: https://github.com/mattbv /tlseparation.
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