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Abstract—Tropical forests are a key component of the global
carbon cycle. Yet, there are still high uncertainties in forest carbon
stock and flux estimates, notably because of their spatial and tem-
poral variability across the tropics. Several upcoming spaceborne
missions have been designed to address this gap. High-quality
ground data are essential for accurate calibration/validation so
that spaceborne biomass missions can reach their full potential in
reducing uncertainties regarding forest carbon stocks and fluxes.
The BIOMASS mission, a P-band SAR satellite from the European
Space Agency (ESA), aims at improving carbon stock mapping and
reducing uncertainty in the carbon fluxes from deforestation, for-
est degradation, and regrowth. In situ activities in support of the
BIOMASS mission were carried out in French Guiana and Gabon
during the TropiSAR and AfriSAR campaigns. During these cam-
paigns, airborne P-band SAR, forest inventory, and lidar data were
collected over six study sites. This paper describes the methods
used for forest inventory and lidar data collection and analysis,
and presents resulting plot estimates and aboveground biomass
maps. These reference datasets along with intermediate products
(e.g., canopy height models) can be accessed through ESA’s Forest
Observation System and the Dryad data repository and will be use-
ful for BIOMASS but also to other spaceborne biomass missions
such as GEDI, NISAR, and Tandem-L for calibration/validation
purposes. During data quality control and analysis, prospects for
reducing uncertainties have been identified, and this paper finishes
with a series of recommendations for future tropical forest field
campaigns to better serve the remote sensing community.

Index Terms—Carbon, ecology, environmental monitoring,
remote sensing, surface topography, synthetic aperture radar,
vegetation.

Manuscript received October 31, 2017; revised February 23, 2018 and
May 16, 2018; accepted June 14, 2018. This work was supported in part
by “Investissement d’Avenir” grants managed by Agence Nationale de la
Recherche (CEBA, ref. ANR-10-LABX-2501; TULIP, ref. ANR-10-LABX-
0041; ANAEE-France, ref. ANR-11-INBS-0001), in part by the Centre Na-
tional d’Etudes Spatiales (CNES), in part by the CTFS-ForestGEO, in part by
the European Regional Development Fund (ERDF contract no. 2907 dated 4
November 2008), in part by the European Space Agency (ESA), in part by the
IFBN project (contract 4000114425/15/NL/FF/gp), “Maboumine” (ERAMET-
COMILOG), NASA Science Mission Directorate, RAINFOR funds (Moore
Foundation), and Shell Gabon. (Corresponding author: Nicolas Labrière.)

N. Labrière, S. Tao, and J. Chave are with Laboratoire Evolution et Di-
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I. INTRODUCTION

TROPICAL forests cover less than 10% of the surface of
the earth but harbor a disproportionately high fraction of

global terrestrial biodiversity [1], [2] and provide a wide range
of ecosystem services [3], [4]. Stocking about a quarter of total
terrestrial carbon and contributing up to a third of net primary
production, tropical forests are a key component of the global
carbon cycle [5]. Their contribution to climate change mitiga-
tion strategies such as REDD+ (United Nations initiative aimed
at “Reducing Emissions from Deforestation and forest Degrada-
tion” through financial incentives) has come under close scrutiny
[6], [7]. Yet, these strategies critically rely on accurate moni-
toring of carbon (C) stocks. There are still high uncertainties
in large-scale estimates of both carbon stocks and fluxes, no-
tably because of their spatial and temporal variability across the
tropics [8], [9]. Several pantropical maps of forest aboveground
biomass (AGB, in Mg ha−1) are available [10]–[12], but their
accuracy has been questioned [12]–[14]. It is also fundamental
to understand the tropical forest carbon cycle over the short and
longer term (e.g., decadal versus centennial time scale). Indeed,
while mature tropical forests are thought to be a carbon sink
[15], [16], extreme climatic events such as droughts could po-
tentially induce significant carbon sources [17], even though the
effect would be smoothed in time because of the decay rate of
dead wood [18].

Several upcoming spaceborne missions have been designed
to address this challenge. Among them, the BIOMASS mission,
an Earth Explorer mission from the European Space Agency
(ESA), has been specifically designed to improve forest carbon
stock mapping and reduce uncertainty in the carbon fluxes due to
deforestation, forest degradation, and regrowth [19]. The satel-
lite payload is composed of a P-band polarimetric SAR (center
frequency of 435 MHz) that will be used to produce maps of
canopy height and aboveground biomass (AGB) at 200-m reso-
lution and deforestation at 50-m resolution twice a year during
the five-year expected lifetime of this mission [20]. Launch is
planned for 2021. Complementary to BIOMASS, NASA will
launch GEDI, a lidar instrument onboard the ISS in 2018–2019.
NASA is also collaborating with ISRO to launch NISAR a dual-
wavelength L-band and S-band SAR aimed at retrieving biomass
from dry forests and woodlands. Finally, DLR is currently de-
veloping Tandem-L, a proposal for an interferometric and po-
larimetric SAR mission with two satellites operating in L-band
[21]. Provided funding approval, the satellites could be launched
in 2023. Together these missions are poised to revolutionize the
quantification of biomass stocks and fluxes at a global scale.

Preliminary activities in support of the BIOMASS mission in-
clude the building of inversion algorithms for AGB and canopy
height retrieval from the backscatter signal. The algorithm de-
velopment is based on experimental data acquired during cam-
paigns that provide airborne SAR data and in situ forest data.
To that purpose, airborne SAR campaigns have been conducted
in French Guiana during the 2009 TropiSAR campaign [22],
and more recently in Gabon during the 2015–2016 AfriSAR
campaign [23]. These SAR acquisitions were conducted by
ONERA, NASA, and DLR, over areas where forest inventory
data and small-footprint lidar were also collected.

A standardized analysis of both forest inventory and li-
dar datasets was commissioned by ESA to provide the re-

Fig. 1. Location of the selected study sites. (a) For the TropiSAR campaign
in French Guiana (n = 2). (b) For the AfriSAR campaign in Gabon (n = 4).

search community with a reference ground dataset of AGB esti-
mates at two spatial resolutions over the in situ plots (100 m
× 100 m and 50 m × 50 m, i.e., 1-ha and 0.25-ha reso-
lution, respectively), and lidar-derived AGB maps (originally
produced at 0.25-ha resolution and coarsened to 1-ha and 4-
ha resolution through aggregation) over each study site. Dig-
ital terrain models (DTM) and canopy height models built
at 1-m resolution are also made available—upon request to
the study site PIs—along with georeferenced polygons for all
the 1-ha and 0.25-ha calibration points. The purpose of this
paper is to document these forest datasets and outline inter-
site comparisons regarding the biomass and forest structure.
The reference datasets are archived in ESA’s Forest Obser-
vation System (http://forest-observation-system.net/) and the
Dryad data repository (https://doi.org/10.5061/dryad.467hp97)
and will be useful to all spaceborne biomass missions for
calibration/validation purposes (e.g., through resampling high-
resolution products to meet mission-specific spatial resolution).
This paper (1) briefly describes the study sites selected for the
two campaigns, (2) provides details about data collection and
analysis procedures, (3) presents and compares field-based and
lidar-derived vegetation structure characteristics at the plot scale
(e.g., stem density, basal area) and at the landscape scale (e.g.,
top-of-canopy height, biomass) across the study sites, and (4)
discusses key points for future ground data campaigns for the
remote sensing community.

II. SITE DESCRIPTION

The 2009 TropiSAR campaign took place at two study sites
in French Guiana, and the 2015–2016 AfriSAR campaign at
four areas in Gabon. These sites were selected in well-studied
areas encompassing various vegetation types and covering a
wide range of vegetation structure characteristics, topography,
and disturbance regimes (see Fig. 1 and Fig. 6 in Appendix A).

A. TropiSAR Campaign

1) Nouragues: The Nouragues study site (4.06° N, 52.68°
W) is located ca. 100 km south of Cayenne, French Guiana.
The terrain is gently hilly, with an altitude ranging between 26
and 280 m above sea level (asl) except in the northern part of
the area where a granitic outcrop (inselberg) reaches 430 m asl.
Mean annual rainfall is ca. 2860 mm yr−1 (1992–2012 average),

http://forest-observation-system.net/
https://doi.org/10.5061/dryad.467hp97
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with a two-month dry season from September to November and
a shorter one in March [24]. Mean annual temperature is 26 °C.
The clayey to sandy-clay soils found in the area have devel-
oped from metamorphic or granitic parental material. Beside
high-canopy old-growth forest, a range of lower-canopy for-
est formations are observed in the area, including periodically
flooded forest dominated with Euterpe palm, low forest, liana
forest, and bamboo thickets. There are typically about 145 tree
species (with diameter at breast height � 10 cm) per ha. The
area is under total protection since 1996 and there is no evidence
of major disturbances during the last 100 years [24], [25].

2) Paracou: The Paracou study site (5.27° N, 52.93°W) is
located ca. 75 km West of Cayenne (https://paracou.cirad.fr).
The altitude ranges between 5 and 45 m asl over an undulat-
ing terrain where clayey-sandy soils are developed from schists
and sandstones. Mean annual rainfall is ca. 3040 mm yr−1

(1979–2001 period) and mean temperature is 26 °C [26]. Mean
tree species richness (ca. 140 per ha) is comparable to that in
Nouragues. The research station was established in 1984 in an
area of disturbance-free moist evergreen rain forest to initiate
an experimental disturbance program (see [27] for details about
the different treatments). The main setup includes 16 permanent
plots, and another plot clear-cut in 1976 (called Arbocel) was
included into the setup in 1992.

B. AfriSAR Campaign

1) Lopé: The Lopé study site (0.20° S, 11.59° E) is located
near the geographical center of Gabon, ca. 250 km East of Li-
breville. Topography is gently hilly, with an altitude ranging
from 200 to 600 m asl. Mean annual rainfall is ca. 1440 mm
yr−1 (1984–2016 period), with a major dry season from mid-
June to mid-September. Temperature ranges from 20–23 °C and
26–33 °C for mean monthly minima and maxima, respectively.
Sandy clay to sandy clay loam soils dominate the area, orig-
inating mostly from metamorphic rocks [28]. Vegetation over
the Lopé study site is a forest-savanna mosaic with different
forest types such as Aucoumea-dominated forests and Maran-
taceae forests co-occurring in the area [29]. There are on an
average 35 tree species richness per ha, with high disparities
between savanna and forest as well as between forest types.
Lopé national park is a UNESCO World Heritage site since
2007, recognition of its unique biological and archaeological
values.

2) Mabounié: The Mabounié study site (0.76° S, 10.56° E)
is located ca. 180 km Southeast of Libreville. Altitude ranges
between 25 and 230 m asl over an area where Rubiaceae,
Fabaceae (Caesalpinioideae and Faboideae), and Euphorbiaceae
are dominant families. Mean temperature is 26 °C and mean
annual rainfall is ca. 2030 mm, with dry and wet seasons oc-
curring between June and September and October and May, re-
spectively (http://worldclim.org/version2). Sandy-clayey soils
developed from gneiss and carbonatite. There are typically
about 55 tree species per ha. The landscape is mostly forested
(of which swamp and temporarily flooded forests constitute
a large proportion) but shows evidence of degradation locally
(e.g., road building). Part of the study site underwent selec-
tive logging starting in the 1960s. While mining exploration
has been ongoing on-site for decades, a mining project called

“Maboumine” was initiated in 2005 following the discovery
of a polymetallic deposit rich in niobium, tantalum, and rare
earths.

3) Mondah: The Mondah study site (0.57° N, 9.35° E) is
located ca. 25 km Northwest of Libreville toward Cap Es-
terias. Altitude seldom exceeds 50 m asl in this coastal area
where mean temperature is 25 °C and mean annual rainfall falls
within the range 3000–3500 mm, with a dry season occurring in
June–September [30]. The sandy-clayey soils in the area devel-
oped from shales and slates. Different vegetation types occur in
this forested area, including Aucoumea-dominated forests and
mixed forests [31]. Some zones of the Mondah study area have
undergone significant disturbance (area of highest rate of defor-
estation across Gabon sensu Hansen et al. 2013; see [32]), but
other patches remain protected [33]. Mean tree species richness
is similar to that in Lopé, with high variations from one plot to
the other depending on disturbance level.

4) Rabi: The Rabi study site (1.92° S, 9.88° E) is located
ca. 260 km South of Libreville. Altitude ranges from 30 to 80
m asl over the study area. Mean annual rainfall is ca. 2300 mm
yr−1 with a rainfall pattern similar to that of Mabounié. Mean
annual temperature lies between 24 and 28 °C. Soils are mostly
sandy clay to clay sand and developed from clastic sedimentary
rocks. Vegetation mostly consists in lowland tropical rain forest
with Fabaceae, Euphorbiaceae, and Olacaceae among the most
abundant families. There are typically about 85 tree species per
ha. The study site is located within the “Rabi Oil Concession”,
an onshore oil-drilling site that has been operational since 1985.
Prior to this, the forest underwent selective logging [34]. While
drilling activity is evident from the lidar imagery over the con-
cession, some of the land has been set aside for preservation.

III. DATA COLLECTION AND ANALYSIS PROCEDURE

Forest inventories were performed and lidar datasets acquired
at different times over the 2008–2016 period. When multiple
field surveys were available for a permanent plot, we chose
the ones closest to the date of the corresponding lidar data
acquisitions (see Table I). The absolute time difference between
the forest inventory and lidar data acquisition ranged from zero
to 5 years.

Because both types of datasets were obtained from multiple
sources, they were carefully checked and harmonized before
analysis (see Sections III-A and III-B for examples). The main
steps of data collection and analysis are detailed below (see
Fig. 2).

A. Forest Inventory Datasets

In all permanent plots, tree diameter at breast height (DBH,
a standard forestry measurement) was measured at 1.30 m from
the ground wherever possible (and above the top of buttresses or
above/below deformities wherever required). Tree identification
and tree coordinates were available for most of the cases. Tree
height measurements, acquired using a laser rangefinder, were
usually only available for a subset of trees per plot (or subset
of plots) aimed at spanning DBH range at each site. Tree height
measurements were not systematically done alongside DBH
inventory campaigns, potentially resulting in a time lag up to
6 years (extreme-case scenario in Rabi where DBH and tree

https://paracou.cirad.fr
http://worldclim.org/version2
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TABLE I
GENERAL CHARACTERISTICS OF FOREST INVENTORY AND LIDAR DATASETS

a Note that region of interest (ROI) area might differ from total lidar coverage (e.g., in Mondah where urban areas were also covered but further discarded for the analyses).
b Average lidar point density for ground points shown in brackets.
c Data from plots set up within the lidar coverage at the study site prior to the main field campaign—data curated by ForestPlots.net—were also included in the analysis.

Fig. 2. Workflow of the data analysis procedure. Abbreviations: AGB above-
ground biomass; CHM canopy height model; DSM digital surface model; DTM
digital terrain model; LDM lidar-derived metrics; QT Modeler Quick Terrain
Modeler.

height were measured in 2010–2012 and in 2017, respectively)
but usually � 1 year between the two sets of information. The
raw tree-by-tree data were checked and corrected if necessary.
Frequent errors concerned:

1) tree identification (e.g., when original names were mis-
spelled or vernacular ones used, precluding matching with
a wood density database);

2) invalid relative tree coordinates (either with respect to plot
dimensions or subplot location when coordinates were
given at the plot scale);

3) DBH values with misplaced or missing comma, resulting
in trees having DBH below minimum cutoff DBH at the
corresponding site, or trees with DBH far too high com-
pared to their species range (e.g., 244 cm for a specimen
of Sacoglottis gabonensis (Baill.) Urb., confirmed to be
24.4 cm after field spreadsheet check).

When vernacular names could not be converted to scientific
names (T. Stévart, pers. comm.), trees were considered uniden-
tified. Plot description was harmonized across all sites (e.g.,
tree relative coordinates were consistently standardized to set
the southwestern-most plot corner as relative referential ori-
gin for each plot). Because minimum DBH varied from one
site to the other, only trees with DBH � 10 cm were included
in the analysis for the sake of consistency. Likewise, lianas
were discarded from the few datasets where they were avail-

able (but note that their biomass can represent up to 3% of
that of trees with DBH � 10 cm; pers. obs. from the Lopé
dataset).

Aboveground biomass estimates (AGB, in megagram of dry
biomass per hectare, Mg ha−1) based on plot data were pro-
duced at 1-ha and 0.25-ha (0.16-ha in case relative tree coordi-
nates were missing) resolutions using the R BIOMASS package
[35]. This package uses a Monte Carlo procedure to propagate
the errors associated with diameter measurement, wood den-
sity assignment, tree height estimation, and the choice of the
biomass allometric equation (“AGBmonteCarlo” function with
the following error-related inputs: Dpropag = “chave2004” for
diameter, and errWD and errH derived from “getWoodDensity”
and “retrieveH” functions for wood density and tree height,
respectively). Using field tree height measurements, we built
Michaelis–Menten models [36] for each site (henceforth re-
ferred to as local H:D relationships) to locally predict tree height
based on trunk DBH. A separate savanna-species H:D relation-
ship was developed from height measurements of individuals
belonging to either Crossopteryx febrifuga or Sarcocephalus
latifolius (only found at Lopé).

Initially, AGB was estimated at the tree level from the mea-
sured DBH, the tree height information (either explicitly or im-
plicitly), the wood density information (derived from the species
identification of the tree; see [37] and [38]) and a biomass allo-
metric equation also available from the R BIOMASS package
[35]. Because palms can be locally abundant in the Neotrop-
ics, their contribution to overall AGB was considered for the
TropiSAR sites using a family-level allometry developed for
Amazonian palms [39]. This includes palms in genera Euterpe,
Oenocarpus, Mauritia, and Astrocaryum. Second, AGB was
obtained at a stand level by summing that of all the trees (and
palms for the TropiSAR sites; note that uncertainties were not
propagated for palms but that their biomass exceeded 5% of
that of trees in less than 1% of the cases) present in the stand.
Overall, three AGB estimates are provided: 1) “agb_fph” us-
ing the allometric (4) in Chave et al. [40] with the vari-
ables wood density, DBH, and height derived from Feldpausch
et al. [41] H:D relationship for Central Africa (AfriSAR sites)
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or the Guiana Shield (TropiSAR sites), 2) “agb_chv” using (7)
in Chave et al. with the variables wood density, DBH, and
height implicitly taken into consideration through the use of
bioclimatic predictor E, and 3) “agb_loc” using (4) in Chave et
al. with the variables wood density, DBH, and height derived
from local H:D relationships. Further details about local tree
H:D relationships and tree/palm allometric equations for AGB
estimation can be found in Appendix B.

B. Lidar Datasets

Lidar data were acquired at all sites. For some of them (e.g.,
Mondah and Mabounié), ground point classification was absent
in the .las files. In this case, ground points were first extracted
using the lastools software (“lasground_new” function, step 25,
bulge 30) before visual inspection of the newly classified point
cloud and manual refinement if necessary (i.e., removal of in-
dividual points classified as “ground” in case they were found
lying well above or below the other ones). Average point den-
sity (either for all or ground points) varied by one order of
magnitude across sites (see Table I). Large intra-site variation
in point density was observed and some small regions had no
lidar returns (e.g., at Mabounié site). Yet, in order to facilitate
inter-site comparison, DTM and digital surface models (DSM;
free of pits and spikes using the Quick Terrain Modeler software
with “Hole Fill” set as “Adaptive Triangulation”) were built at
1-m resolution for each site by interpolating ground and highest
points on a 1-m grid, respectively. The canopy height model
(CHM) was then obtained by subtracting the DTM from the
DSM (see Fig. 2).

C. Refining Permanent Plot Georeferencing

For some plots, GPS location was generally obtained by hand-
held GPS, at an accuracy of 5–10 m. To improve georeferencing,
we compared the GPS locations of emergent trees (the 4%-
largest trees in the plot) inferred from ground positioning to that
deduced from the lidar scene (see also [24]). We shifted the tree
GPS coordinates to best-match the lidar-derived CHM, resulting
in horizontal shifts typically of less than 10 m. At Mabounié,
relative tree coordinates were missing so it was not possible to
apply this procedure.

D. AGB-LDM Model

Several small-footprint lidar-derived metrics (LDM) have
proven successful in predicting AGB in tropical forests at the
landscape scale. These LDM include mean top-of-canopy height
(TCH; see [42] and [43]) or median height of CHM (H50 ; see
[24]). The tested models generally related AGB to a power law
of the LDM. Ordinary least squares regressions on log–log trans-
formed data were performed for the simplest of such power-law
models as follows:

ln (AGB) = a + b × ln (LDM) + ε (1)

where ε is an error term assumed to be normally distributed
with zero mean. Back-transformation to the original scale and
multiplication by a correction factor to account for a known
bias in an error structure (i.e., larger errors associated with large
values) [44] led to the following model for stand-scale AGB

predictions:

̂AGB = exp(a + σ2/2) × LDMb (2)

where σ is the estimated standard deviation of the residuals of
the log–log regression and exp(σ2/2) the aforementioned cor-
rection factor. An “all-sites” model as well as site-specific ones
were built using calibration points at 1-ha and 0.25-ha reso-
lution, independently. A leave-one-site-out (LOSO) procedure,
where models are calibrated without, and validated with, all
the site-specific calibration points, was used to evaluate model
transferability for the “all-sites” model.

E. Statistical Analysis

All statistical analyses were done using R 3.4.0 [45]. We
performed pairwise regressions to investigate the correlation
among AGB estimates inferred from the three allometric equa-
tions. We tested for differences (at p < 0.01) in the field-based
and lidar-derived vegetation structure characteristics depending
on the study site using analysis of variance followed by Tukey’s
honest significant difference (HSD). Root-mean-square error
(RMSE), coefficient of correlation (R2) and bias were calcu-
lated on back-transformed values for LDM (TCH versus H50)
as well as model (site-specific versus “all-sites”) selection, and
those with the lowest RMSE and bias—and highest R2—were
selected to produce AGB maps at the landscape scale.

IV. RESULTS

A. At the Plot Scale

1) Allometries for AGB Estimation: We found that ground
AGB estimates, as inferred from the three allometric equa-
tions, were highly correlated with each other (R2 > 0.99). The
Feldpausch-derived allometry consistently led to higher mean
AGB estimates compared to the two other allometries. The 95%
credibility intervals often overlapped for AGB estimates from
one allometry to the other (see Fig. 7 in Appendix A). AGB es-
timates where tree height was inferred from locally derived H:D
relationships were selected for all the subsequent analyses [40].
Thus, “agb_loc” will be the only field-based AGB estimates
considered hereinafter (although the data product contains all
the values).

2) Vegetation Structure Characteristics: The degree of
botanical determination varied greatly across sites, ranging
26–77% and 69–97% for stem identification to species and
genus, respectively (see Table II). At each site, the two LDM
of stand canopy height (TCH and H50) had similar mean values
though variability was always higher for the latter. AGB was
significantly higher at Nouragues, due to significantly higher
canopy height and BA (but not WD) compared to other study
sites. AGB was significantly lower at Mondah, where canopy
height, BA, and WD were all significantly lower compared to
other study sites. Lopé and Mondah consistently showed highest
variability across field-based and lidar-derived vegetation struc-
ture characteristics. This reflects the fact that sampling at those
sites was specifically designed to encompass a broader range of
natural and human-disturbed vegetation types—some of them
nonforest—compared to other sites (e.g., savanna at Lopé, and
derived woodland sensu Putz and Redford [46] at Mondah).
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TABLE II
SUMMARY STATISTICS OF FIELD-BASED AND LIDAR-DERIVED VEGETATION STRUCTURE CHARACTERISTICS OVER THE 1-HA CALIBRATION POINTS (n = 183)

Mean values with the same letter are not significantly different (Tukey’s HSD test, p < 0.01). Summary statistics on AGB are based on “agb_loc” estimates. Abbreviations: BA
basal area; H5 0 median height of the canopy height model; TCH mean top-of-canopy height; WD basal area-weighted wood density.

TABLE III
COMPARISON OF MODEL PERFORMANCES FOR STAND-SCALE AGB PREDICTION

RMSE, coefficient of correlation (R2, values in brackets following RMSE) and bias were calculated on back-transformed values. RMSE, R2 and bias were computed for
an “all-sites” model as well as site-specific ones using calibration points at 1-ha and 0.25-ha resolution, independently. On the other hand, LOSO RMSE, R2 and bias
corresponded to cases where models were calibrated without, and validated with, all the site-specific calibration points. Abbreviations: H5 0 median height of the canopy
height model; TCH mean top-of-canopy height.

3) Stand-Scale AGB Modeling: Correlations between lidar-
derived and field-based AGB estimates were higher at 1-ha com-
pared to 0.25-ha resolution (see Table III). Except on rare oc-
casions, site-specific bias was expectedly lower than the one
derived from the LOSO procedure. Results were more mixed
concerning RMSE, and overall suggested suitable transferabil-
ity of the “all-sites” model to predict AGB at the landscape
scale across all sites. Some RMSE and bias values (both for
site-specific and LOSO models) were unrealistically high. This
was especially true for Mondah and Lopé, where the survey of
distinct vegetation types over the same study site led to higher
errors compared to other sites where vegetation was more ho-
mogenous. Despite contrasted results for site-specific models,
we found H50 to be a better predictor of AGB compared to
TCH in “all-sites” models at both resolutions. Therefore, each
“all-sites” model with H50 as a sole predictor was selected for
AGB modeling both at 1-ha and 0.25-ha resolutions (see Fig. 3).

Fig. 3. Relationship between field-based AGB and lidar-derived median
height of the CHM (H50 ) over (a) 183 calibration points of one ha, and (b)
846 and 48 calibration points of 0.25 ha and 0.16 ha, respectively. Model form

is ̂AGB = A × H50
b , where the A coefficient is exp(a + σ2/2), built from

the intercept of the log-log regression a and the Baskerville correction factor
exp(σ2 /2).
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Fig. 4. Distribution of top-of-canopy height at 1-m resolution across study
sites.

Relative RMSE of the “all-sites” models were 14.3% and 23.6%
at 1-ha and 0.25-ha resolutions, respectively.

B. At the Landscape Scale

1) Top-of-Canopy Height Distribution: Distribution of top-
of-canopy height varied across sites (see Fig. 4). Land-
scapes displaying a forest-savannah mosaic (Lopé) or large
areas of human-disturbed vegetation (Mondah) had a differ-
ent canopy height structure compared to closed-canopy forest
landscapes.

The truncated bell-shaped distribution of the top-of-canopy
height over Rabi (and to a lesser extent Mabounié) reflects the
presence of bare soil, regenerating vegetation, and old-growth
forest in the same landscape [47]. Top-of-canopy height was
found to be spatially homogeneous in Paracou despite the ex-
perimental disturbance program conducted in the 80s (but note
that out of the 10–15% of the landscape concerned by the pro-
gram, some of this area served as control plots).

2) Aboveground Biomass: Patterns of AGB varied greatly
across sites, with a number of explanatory causes, both natu-
ral and anthropic (see Fig. 5). For example, sharp AGB vari-
ations could be interpreted in terms of changes in vegetation
type (savanna versus forest in Lopé, bamboo thickets or derived
woodland versus closed-canopy forest in Nouragues or Mon-
dah, respectively), the presence of geological features (granitic
outcrop in the northern part of Nouragues) or artificial infras-
tructures such as roads (e.g., in Mabounié and Rabi). The density
of high-biomass pixels (AGB > 600 Mg ha−1 at 0.25-ha resolu-
tion) was highest at Lopé, followed by Mondah and Nouragues
(see Fig. 8 in Appendix A).

V. CONCLUDING REMARKS AND OUTLOOK

A. Spatial Mapping of AGB

The model selected to infer AGB at the landscape scale was
a simple power-law model that depended solely on H50 (rather

Fig. 5. Aboveground biomass (AGB, in Mg ha−1) over each study site land-
scape. Maps of predicted AGB were originally built at 0.25-ha resolution
using a single “all-sites” relationship between AGB and median height of
the CHM (H50 ). All maps are displayed at the same scale. Maps of coarser
resolution (obtained through pixel aggregation by a factor of 2 and 4 to
reach 1-ha and 4-ha resolution, respectively; mean returned, no extension al-
lowed) are available in the Dryad data repository that can be accessed from
https://doi.org/10.5061/dryad.467hp97.

than TCH, though differences were small both in terms of RMSE
and bias; see Table III), consistent with findings of [24]. Asner
and Mascaro have argued that such a simple model would fail to
capture regional variation in BA and WD across very different
forest types [42], therefore limiting its predictive power at a
global scale. Alternatively, they suggested the use of a generic or
preferably, whenever field-based inputs are available, regionally
calibrated models mirroring the structure of general tree-level
allometric equations, i.e.,

̂AGB = α × TCHβ × BAγ × WDδ (3)

where TCH is the mean top-of-canopy height (m), BA is the
stand basal area (m2 ha−1), and WD is the basal area-weighted
wood density (g cm−3). For such a model to be applied over the
landscape, one approach is to regress BA and WD against TCH
and to substitute these regressions back into (3) so that AGB
prediction depends solely on TCH (which is mathematically
equivalent to (2) as acknowledged in [42]). Such an approach
was tested but did not lead to any prediction improvement (see
Table V in Appendix C). Yet, apart from a few plots in savanna
and human-disturbed vegetation, we have limited our analysis

https://doi.org/10.5061/dryad.467hp97
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to tall closed-canopy forests in two regions and cannot therefore
address Asner & Mascaro’s argument, as they compared much
more contrasted forest types.

In the future, it would be interesting to explore further how
to improve generic lidar-derived AGB models. Regressing BA
against gap fraction at 20 m—the proportion of area not occu-
pied by crown at 20 m aboveground–instead of TCH or H50 ,
as advised in [43], is an option. However, here, it did not lead
to any improvement of the model performances (results not
shown, but raw data at 1-ha and 0.25-ha resolution are avail-
able in the Dryad data repository that can be accessed from
https://doi.org/10.5061/dryad.467hp97). Alternatively, pointing
out several structural problems in (3), Vincent et al. stressed
that AGB can be more rigorously decomposed as the product
of stem density, (a linear function of) quadratic diameter, and
wood density [48]. While previous work showed that both stem
density and quadratic diameter can be estimated from lidar [49],
the authors emphasize the key role of forest stratification as a
first step toward lidar-derived biomass mapping at the landscape
scale [48]. Another prospect is that the wood density could be
retrieved from space through biodiversity-related or physical
metrics. Developments in airborne hyperspectral spectroscopy
enable leaf trait mapping over extended areas [50], which could
be related to wood density even though this is challenging [14],
[51]. Passive and active microwave sensors are sensitive to vege-
tation water content (e.g., [52]) that has been shown to be related
to the wood density [53].

B. Prospects for Reducing Uncertainties

Beyond uncertainties associated with the spatial mapping of
AGB, errors inherent to stand biomass estimation (e.g., field-
based tree measurement error and uncertainties associated with
the allometric equation and sampling error) have already been
emphasized [54]. An important aspect of this paper has been
to account for the most important of these sources of error in
the computation of credibility intervals associated to stand AGB
[35], [55].

Other sources of uncertainties contributing to the overall error
of the extrapolation model are often ignored:

1) field reporting errors (e.g., decimal place error, that can
potentially lead to dramatic over- or under-estimation of
AGB);

2) inaccurate or missing tree height measurements;
3) incorrect or missing tree identification;
4) time lag between ground and lidar data acquisition (that

can represent up to 3% of the error on some stand param-
eters such as BA for a 6–8 year time lag in undisturbed
forest [49] or more highly human-disturbed landscapes);

5) incorrect or missing within-plot tree coordinates;
6) inaccurate or missing plot coordinates; and
7) missing information about plot and subplot layout.
Accurate georeferencing of plots and individual trees is an

essential step in the quality assessment of field-based datasets
and is fundamental for an accurate match with remote sensing
measurements [56]. Also, this would be important to support
the recent development of individual tree crown approaches for
stand-level biomass estimation [43], [57]. Although we coped
with these errors to the best of our ability, such errors still impact

the products. It will be key to minimize this kind of errors in
upcoming field campaigns.

Lidar acquisition parameters are also known to influence the
quality of AGB mapping. Biased tree height estimation due
to low point density (e.g., when average point density drops
below 4 m−2, which is the case at Lopé and Rabi; see Table I)
can potentially lead to errors up to 125 Mg ha−1 in inferred
AGB [58], especially when the landscape has a heterogeneous
topography creating large errors in the DTM. As informative
as average point density can be, it can potentially mask spatial
heterogeneity in lidar acquisition across the landscape. Moving
toward minimal common quality standards in terms of lidar
acquisition parameters (e.g., in terms of point density and spatial
homogeneity) should become a major operational objective.

C. Recommendations

Based on the above, we advocate for the following recom-
mendations for future tropical forest field campaigns to generate
data that would better serve the remote sensing community.

1) Strict compliance with the RAINFOR protocol [59] when
establishing new plots or remeasuring existent ones. Us-
ing the protocol, crucial information is recorded at the
plot level (e.g., plot orientation, plot coordinates, subplot
layout), and tree level (e.g., XY relative coordinates, tag
number, family and species name, diameter, point of mea-
surement, measurement technique, height, bole form). As
per the protocol instructions, lianas should also always
be measured. Botanical identifications, from sample col-
lection to identification to curation, play a critical role in
the protocol. These activities are time consuming but are
unavoidable in stem wood density assignation and subse-
quent AGB estimation. Though optional in the protocol,
we stress that using a laser rangefinder to get stem XY
relative coordinates should become a standard procedure
for stem mapping.

2) Preferential use of data from permanent plots with mul-
tiple censuses. This is the key to ensure data quality as it
is often the unique way to develop semiautomated quality
checks (e.g., allowing to flag unrealistic increase/decrease
in DBH from two successive DBH measurements).

3) Double entry of the data to cope with typographical errors
(as suggested in [60]).

4) Optimization of both spatial and temporal matches be-
tween ground and lidar data acquisitions (e.g., through
the use of a differential GPS in the field, and via budget-
ing of vegetation surveys concomitantly to the airborne
campaign).

Ongoing initiatives aimed at building global databases of
field-based forest biomass estimates should prioritize high-
quality data collected following clearly set standards. These
initiatives include (but are not restricted to) the Forest Obser-
vation System (see http://forest-observation-system.net for de-
tails) and the “Biomass” focus area of the Land Product Valida-
tion subgroup of the Committee on Earth Observation Satellites
(CEOS LPV; see https://lpvs.gsfc.nasa.gov for details). Only
with high-quality ground data and a close connection with site
primary investigators, will it be possible for spaceborne biomass
missions to reach their full potential in reducing uncertainties
regarding forest carbon stocks and fluxes.

https://doi.org/10.5061/dryad.467hp97
http://forest-observation-system.net
https://lpvs.gsfc.nasa.gov
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APPENDIX A

Fig. 6. Elevation (in meter above sea level; from the DTM) and canopy height
(in meter; from the canopy height model) over each study site landscape. The
location of permanent plots across the landscape is shown on each figure. Note
that each square area represents a 0.25-ha resolution calibration point (i.e., 50
m × 50 m) except at Mabounié where squares represent 100 m × 100 m plots.
For each study site, the black bar corresponds to 1 km.

Fig. 7. Relationships between AGB estimates using three different allome-
tries: “agb_fph” (where tree height is derived from regional H:D relationships),
“agb_chv” (where tree height is implicitly taken into consideration through the
use of bioclimatic predictor E), and “agb_loc” (where tree height is derived from
local H:D relationships). Mean AGB estimates for 1-ha resolution calibration
points (n = 183) are displayed along with their 95% credibility intervals. Note
that most 95% credibility intervals cross the 1:1 line.

Fig. 8. Distribution of predicted aboveground biomass (AGB, in Mg ha−1) at
0.25-ha resolution over the different study sites.

APPENDIX B

TABLE IV
COEFFICIENTS OF SITE-SPECIFIC AND REGIONAL HEIGH:

DIAMETER RELATIONSHIPS

Site-specific H:D relationships were developed in this study using Michaelis-Menten
models of the form Ĥ = (a × D )/(b + D ). Tree height derived from these local
H:D relationships were used to compute “agb_loc.” Regional H:D relationships
were developed in the Feldpausch et al. study [41] using Weibull models of the
form Ĥ = a × (1 − exp(−b × Dc )). Tree height derived from those regional
H:D relationships were used to compute “agb_fph.” Abbreviations: RSE residual
standard error.

Several equations were used to estimate tree and palm
AGB at the stem level. On the one hand, “agb_loc” and
“agb_fph” estimates were obtained using the allometric (4)
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in Chave et al. [40]:

̂AGBtree = 0.0673 × (

ρD2H
)0.976

(B.1)

where ρ is the wood density (g cm−3), D is the diameter (cm),
and H is the total height (m) derived either from a local or
regional H:D relationship, respectively. On the other hand,
“agb_chv” was obtained using the modified version of (7) in
Chave et al. (see [35] for details):

̂AGBtree = exp
[ − 2.024 − 0.896 × E + 0.920 × ln (ρ)

+ 2.795 × ln (D) − 0.0461 × (ln (D))2]

(B.2a)

where ρ is the wood density (g cm−3), D is the diameter (cm),
and E is a local bioclimatic composite variable computed as
follows:

E = (0.178 × TS − 0.938 × CWD − 6.61 × PS) × 10−3

(B.2b)
where TS is the temperature seasonality as defined in the
Worldclim dataset (bioclimatic variable 4; see http://www.
worldclim.org/bioclim), CWD is the climatic water deficit
(mm yr−1), and PS is the precipitation seasonality as defined
in the Worldclim dataset (bioclimatic variable 15). Palm AGB
was estimated using the following equation developed for Ama-
zon palms [39]:

̂AGBpalm =exp
[

0.5882/2 − 3.3488 + 2.7483×ln (D)
]

×10−3 .

(B.3)

APPENDIX C

TABLE V
COMPARISON OF MODEL PERFORMANCES FOR STAND-SCALE AGB PREDICTION

Two models were compared: the model used in this study ( ̂AGB = A × H5 0
b )

and the regionally calibrated one proposed by Asner and Mascaro ( ̂AGB = α ×
TCHβ × BAγ × WDδ; see [42]). Ordinary least squares regressions on log–log
transformed data were performed using 183 and 894 calibration points at 1-ha and
0.25-ha resolution, respectively. RMSE, coefficient of correlation (R2 , values in
brackets following RMSE), and bias were calculated on back-transformed values.
Abbreviations: H5 0 median height of the canopy height model; TCH mean top-of-
canopy height.
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