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Abstract

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of

Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-

km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass

maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted

linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was

applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which

were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for

the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also

showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo

basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of

Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used

in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most impor-

tantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha�1 vs. 21 and 28 Mg ha�1 for the input maps). The fusion

method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass

estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.
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Introduction

Recently, considerable efforts have been made to better

quantify the amounts and spatial distribution of above-

ground biomass (AGB), a key parameter for estimating

carbon emissions and removals due to land-use change,

and related impacts on climate (Saatchi et al., 2011;

Baccini et al., 2012; Harris et al., 2012; Houghton et al.,

2012; Achard et al., 2014; Mitchard et al., 2014). Particu-

lar attention has been given to the tropical regions,

where uncertainties are higher (Pan et al., 2011; Ziegler

et al., 2012; Grace et al., 2014). In addition to ground

observations acquired by research networks or for for-

est inventory purposes, several AGB maps have been

recently produced at different scales, using a variety of

empirical modelling approaches based on remote

sensing data calibrated by field observations (e.g.,

Goetz & Dubayah, 2011; Birdsey et al., 2013). AGB

maps at moderate resolution have been produced for

the entire tropical belt by integrating various satellite

observations (Saatchi et al., 2011; Baccini et al., 2012),

while higher resolution datasets have been produced at

local or national level using medium-high resolution

satellite data (e.g., Avitabile et al., 2012; Cartus et al.,

2014), sometimes in combination with airborne Light

Detection and Ranging (LiDAR) data (Asner et al.,

2012a,b, 2013, 2014a). The various datasets often have

different purposes: research plots provide a detailed

and accurate estimation of AGB (and other ecological

parameters or processes) at the local level, forest inven-

tory networks use a sampling approach to obtain statis-

tics of biomass stocks (or growing stock volume) per

forest type at the subnational or national level, while

high-resolution biomass maps can provide detailed and

spatially explicit estimates of AGB density to assist nat-

ural resource management, and large scale coarse-reso-

lution datasets depict AGB distribution for global-scale

carbon accounting and modelling.

In the context of the United Nations mechanism for

Reducing Emissions from Deforestation and forest

Degradation (REDD+), emission estimates obtained

from spatially explicit biomass datasets may be

favoured over those based on mean values derived

from plot networks. This preference stems from the fact

that plot networks are not designed to represent land

cover change events, which usually do not occur ran-

domly and may affect forests with biomass density sys-

tematically different from the mean value (Baccini &

Asner, 2013). With very few tropical countries having

national AGB maps or reliable statistics on forest car-

bon stocks, regional maps may provide advantages

compared to the use of default mean values (e.g., IPCC

(2006) Tier 1 values) to assess emissions from deforesta-

tion, as long as their accuracy is reasonable and their

estimates are not affected by systematic errors (Avita-

bile et al., 2011). These conditions are difficult to assess,

however, since rigorous validation of regional AGB

maps remains problematic, given their large area cover-

age and large mapping unit (Mitchard et al., 2013),

while ground observations are only available for a lim-

ited number of small sample areas.

The comparison of two recent pan-tropical AGB

maps (Saatchi et al., 2011; Baccini et al., 2012) revealed

substantial differences between the two products

(Mitchard et al., 2013). Further comparison with ground

observations and high-resolution maps also highlighted

notable differences in AGB patterns at regional scales

(Baccini & Asner, 2013; Hill et al., 2013; Mitchard et al.,

2014). Such comparisons have stimulated a debate over

the use and capabilities of different types of biomass

products (Langner et al., 2014; Saatchi et al., 2014) and

have highlighted both the importance and sometimes

the lack of integration of different datasets. On one

hand, the two pan-tropical maps are consistent in terms

of methodology because both use the same primary

data source (GLAS LiDAR) alongside a similar mod-

elling approach to upscale the LiDAR data to larger

scales. Moreover, they have the advantage of being cali-

brated using hundreds of thousands of AGB estimates

derived from height metrics computed by a spaceborne

LiDAR sensor distributed over the tropics. However,

such maps are based on remotely sensed variables that

do not directly measure AGB, but are sensitive to

canopy cover and canopy height parameters that do

not fully capture the AGB variability of complex tropi-

cal forests. Furthermore, both products assume global

or continental allometric relationships in which AGB

varies only with stand height, and further errors are

introduced by upscaling the calibration data to the

coarser satellite data. On the other hand, ground plots

use allometric equations to estimate AGB at individual

tree level using directly measurable parameters such as

diameter, height and species identity (hence wood den-

sity). However, they have limited coverage, are not

error-free, and compiling various datasets over large

areas is made more complex due to differing sampling

strategies (e.g., stratification of landscapes, plot size,

minimum diameter of trees measured). Considering the

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139
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rapid increase of biomass observations at different

scales and the different capabilities and limitations of

the various datasets, it is becoming more and more

important to identify strategies that are capable of mak-

ing best use of existing information and optimally inte-

grate various data sources for improved large area

AGB assessment (e.g., see Willcock et al., 2012).

In the present study, we compiled existing ground

observations and locally calibrated high-resolution bio-

mass maps to obtain a high-quality AGB reference

dataset for the tropical region (Objective 1). This refer-

ence dataset was used to assess two existing pan-tropi-

cal AGB maps (Objective 2) and to combine them in a

fused map that optimally integrates the two maps,

based on the method presented by Ge et al. (2014)

(Objective 3). Lastly, the fused map was assessed and

compared to known AGB stocks and patterns across

the tropics (Objective 4).

Overall, the approach consisted of preprocessing,

screening and harmonizing the pan-tropical AGB maps

(called ‘input maps’), the high-resolution AGB maps

(called ‘reference maps’) and the field plots (called ‘ref-

erence plots’; ‘reference dataset’ refers to the maps and

plots combined) to a common spatial resolution and

geospatial reference system (Fig. 1). The input maps

were combined using bias removal and weighted linear

averaging (‘fusion’). The fusion model was applied

independently to areas associated with different error

patterns of the input maps (called ‘error strata’), which

were estimated from the reference data and additional

covariates (called ‘covariate maps’). The reference data-

set included only a subset of the reference maps (i.e.,

the cells with highest confidence) and if a stratum was

lacking reference data (‘reference data gaps’), addi-

tional data were extracted from the reference maps

(‘consolidation’). The fused map was validated using

independent data and its uncertainty quantified using

model parameters. In this study, the terms AGB refers

to aboveground live woody biomass and is reported in

units of Mg dry mass ha�1. The fused map and the cor-

responding reference dataset can be freely downloaded

from www.wageningenur.nl/grsbiomass.

Materials and methods

Input maps

The input maps used for this study were the two pan-tropical

datasets published by Saatchi et al. (2011) and Baccini et al.

(2012), hereafter referred to as the ‘Saatchi’ and ‘Baccini’ maps

individually, or as ‘input’ maps collectively. The Baccini map

was provided in MODIS sinusoidal projection with a spatial

resolution of 463 m while the Saatchi map was in a geographic

projection (WGS-84) at 0.00833 degrees (approximately 1 km)

pixel size. The two datasets were harmonized by first project-

ing the Baccini map to the coordinate system of the Saatchi

map using the Geospatial Data Abstraction Library

(www.gdal.org) and then aggregating it to match the spatial

resolution and grid of the Saatchi map. Spatial aggregation

Input  
Maps

Reference 
Plots

Covariate
Maps

Reference 
Maps

Pre-process

Pre-process & 
Error modelling

Pre-process Upscale & 
screen

Ref. Plots
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Ref. Data 
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Ref. Dataset
(Consolidated)

Fusion

Input Maps
(1km)

Ref. Maps 
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Error Strata 
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Fig. 1 Flowchart illustrating the methods for generating the fused biomass map and associated uncertainty.

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139

PAN-TROPICAL FUSED BIOMASS MAP 3

http://www.wageningenur.nl/grsbiomass
http://www.gdal.org


was performed by computing the mean value of the pixels

whose centre was located within each 1-km cell of the Saatchi

map. Resampling was then undertaken using the nearest

neighbour method.

Reference dataset

The reference dataset comprised individual tree-based field

data and high-resolution AGB maps independent from the

input maps. The field data included AGB estimates derived

from field measurement of tree parameters and allometric

equations. The AGB maps included high-resolution (≤100 m)

datasets derived from satellite data using empirical models

calibrated and validated using local ground observations and,

in some cases, airborne LiDAR measurements. Given the vari-

ability of procedures used to acquire and produce the various

datasets, they were first screened according to a set of quality

criteria to select only the most reliable AGB estimates, and

then preprocessed to be harmonized with the pan-tropical

AGB maps in terms of spatial resolution and observed vari-

ables. Field and map datasets providing aboveground carbon

density were converted to AGB units using the same coeffi-

cients used for their original conversion from biomass to car-

bon. The sources and characteristics of the reference data are

listed in the Supplementary Information (Tables S8 - S11).

Reference field data. The reference field data were measure-

ments from forest inventory plots for which accurate geoloca-

tion and biomass estimates were available. Preprocessing of

the data consisted of a 2-step screening and a harmonization

procedure. A preliminary screening selected only the ground

data that satisfied the following criteria: (1) they estimated

AGB for all living trees with diameter at breast height ≥5–
10 cm; (2) they were acquired on or after the year 2000; (3)

they were not used to calibrate the LiDAR-AGB relationships

of the input maps; and (4) their plot coordinates were mea-

sured using a GPS. Since the taxonomic identities of trees

strongly indicate wood density, and hence stand-level bio-

mass (e.g., Baker et al., 2004; Mitchard et al., 2014), plots were

only selected if tree AGB was estimated using at least tree

diameter and wood density as input parameters. Datasets

were excluded if they did not conform to these requirements

or did not provide clear information on the biomass pool mea-

sured, the tree parameters measured in the field, the allomet-

ric model applied, the year of measurement or the plot

geolocation and extent. Next, the plot data were projected to

the geographic reference system WGS-84 and harmonized

with the input maps by averaging the AGB values located

within the same 1-km pixel if there was more than one plot

per pixel, or by directly attributing the plot AGB to the respec-

tive pixel if there was only one plot per pixel. Field plots not

fully located within one pixel were attributed to the map cell

where the majority of the plot area (i.e., the plot centroid) was

located.

Lastly, the representativeness of the plot over the 1-km

pixels was considered, and the ground data were further

screened to discard plots not representative of the map cells

in terms of AGB density. More specifically, since the two

input maps in their native reference systems are not aligned

and therefore their pixels do not correspond to the same

geographic area, the plot representativeness was assessed

on the area of both pixels (identified before the map resam-

pling). The representativeness was evaluated on the basis of

the homogeneity of the tree cover and crown size within

the pixel, determined through visual interpretation of high-

resolution images provided on the Google Earth platform.

If the tree cover and tree crowns were not homogeneous

over at least 90% of the pixel area, the plots located within

the pixel were discarded (Fig. S1). In addition, if subse-

quent Google Earth images indicated that forest change

processes (e.g., deforestation or regrowth) occurred in the

period between the field measurement and the reference

years of the input maps, the corresponding plots were dis-

carded.

Reference biomass maps. The reference biomass maps con-

sisted of high-resolution local or national AGB maps pub-

lished in the scientific literature. Maps providing AGB

estimates grouped in classes (e.g., Willcock et al., 2012) were

not used since the class values represent the mean AGB over

large areas, usually spanning multiple strata used in the pre-

sent study (see ‘Stratification approach’). The reference AGB

maps were first preprocessed to match the input maps

through reprojection, aggregation and resampling using the

same procedures described for the preprocessing of the Bac-

cini map. Then, only the cells with largest confidence (i.e.,

lowest uncertainty) were selected from the maps. Since

uncertainty maps were usually not available, and considering

that the reference maps were based on empirical models, the

map cells with greatest confidence were assumed to be those

in correspondence of the training data (field plots and/or

LiDAR data). When the locations of the training data were not

available, random pixels were extracted from the maps. For

maps based only on radar or optical data, whose signals satu-

rate above a certain AGB density value, only pixels below

such a threshold were considered. To compile a reference

database that was representative of the area of interest and

well-balanced among the various input datasets (as defined in

‘Consolidation of the reference dataset’), the amount of refer-

ence data extracted from the AGB maps was proportional to

their area and not greater than the amount of samples pro-

vided by the field datasets representing a similar area. In the

case where maps with extensive training areas provided a dis-

proportionate number of reference pixels, a further screening

selected only the areas underpinned by the largest amount of

training data.

Consolidation of the reference dataset. Considering that the

modelling approach used in this study is applied indepen-

dently by stratum (which represent areas with homogeneous

error structure in both input maps; see ‘Stratification

approach’) and is sensitive to the characteristics of the refer-

ence data (see ‘Modelling approach’), each stratum requires

that calibration data are relatively well-balanced between the

various reference datasets. Specifically, if a stratum contains

few calibration data, the model becomes more sensitive to out-

liers, while if a reference dataset is much larger than the

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139
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others, the model is more strongly determined by the domi-

nant dataset. For these reasons, for the strata where the refer-

ence dataset was under-represented or unbalanced, it was

consolidated by additional reference data taken from the refer-

ence AGB maps, if available. The reference data were consid-

ered insufficient if a stratum had less than half of the average

reference data per stratum, and were considered un-balanced

if a single dataset provided more than 75% of the reference

data of the whole stratum and it was not representative of

more than 75% of its area. In such cases, additional reference

data were randomly extracted from the reference AGB maps

that did not provide more than 75% of the reference data. The

amount of data to be extracted from each map was computed

in a way to obtain a reference dataset with an average number

of reference data per stratum and not dominated by a single

dataset. If necessary, additional training data representing

areas with no AGB (e.g., bare soil) were included, using visual

analysis of Google Earth images to identify locations without

vegetation.

Selected reference data. The AGB reference dataset compiled

for this study consisted of 14 477 1-km reference pixels, dis-

tributed as follows: 953 in Africa, 449 in South America,

7675 in Central America, 400 in Asia and 5000 in Australia

(Fig. 2, Table 1). The reference data were relatively uni-

formly distributed among the strata (Table S6) but their

amount varied considerably by continent. The average

amount of reference data per stratum ranged from 50 (Asia)

to 958 (Central America) 1-km reference pixels and their

variability (computed as standard deviation relative to the

mean) ranged from 25% (South America) to 52% (Central

America). The uneven distribution of reference data across

the continents is mostly caused by the availability of ground

observations: as indicated above, to have a balanced refer-

ence dataset for each stratum the reference data extracted

from AGB maps were limited to the (smaller) amount of

direct field observations. When AGB maps were the only

source of data, this constraint was not occurring and larger

datasets could be derived from the maps (i.e., Central Amer-

ica, Australia).

The reference data were selected from 18 ground datasets

and from nine high-resolution AGB maps calibrated by field

observations and, in four cases, airborne LiDAR data (Table 1).

The field plots used for the calibration of the maps are not

included in this section because they were only used to select

the reference pixels from the maps. The visual screening of the

field plots removed 35% of the input data (from 6627 to 4283)

and their aggregation to 1-km resolution further removed 70%

of the reference units derived from field plots (from 4283 to

1274), while 10 741 reference pixels were extracted from the

high-resolution AGB maps. The criteria used to select the refer-

ence pixels for each map are reported in Table S2. The consoli-

dation procedure was necessary only for Central America

where it added 2415 reference data, while 47 pixels represent-

ing areas with no AGB were identified in Asia (Table S1). In

general, ground observations were mostly discarded in areas

characterized by fragmented or heterogeneous vegetation cover

and high biomass spatial variability. In such contexts, reference

data were often acquired from the AGB maps.

Stratification approach

Preliminary comparison of the reference data with the input

maps showed that the error variances and biases of the input

Reference data

Saatchi extent

Baccini extent
0 2 500 5 0001 250

Kilometers

Fig. 2 AGB reference dataset for the tropics and spatial coverage of the two input maps.

Table 1 Number of reference data (plots and 1-km pixels)

selected after the screening, upscaling and consolidating pro-

cedures, per continent. The reference data selected for each

individual dataset are reported in Table S1. The field plots

underpinning the reference AGB maps are not included

Continent

Available
Selected

Consolidated

Plots Plots Pixels Pixels

Africa 2281 1976 953 953

S. America 648 474 449 449

C. America – – 5260 7675

Asia 3698 1833 353 400

Australia – – 5000 5000

Total 6627 4283 12 015 14 477

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139

PAN-TROPICAL FUSED BIOMASS MAP 5



maps were not spatially homogeneous but varied consider-

ably in different regions. Since the fusion model used in this

study (see ‘Modelling approach’) is based on bias removal

and weighted combination of the input maps, the more homo-

geneous the error characteristics in the input maps are, the

better they can be reduced by the model. For this reason, the

stratification approach aimed at identifying areas with homo-

geneous error structure (hereafter named ‘error strata’) in both

input maps. A first stratification was undertaken based on

geographic location (namely Central America, South America,

Africa, Asia and Australia) to reflect the regional allometric

relationships between AGB and tree diameter and height

(Feldpausch et al., 2011, 2012). Then, the error strata were

identified for each continent using a two-step process. First,

the error maps of the Saatchi and Baccini maps were predicted

separately. Since the AGB estimates of the input maps were

mostly based on optical and LiDAR data that are sensitive to

tree cover and tree height, it was assumed that their uncertain-

ties were related to the spatial variation of these parameters.

In addition, the errors of the input maps were found to be lin-

early correlated with the respective AGB estimates. For these

reasons, the AGB maps themselves, as well as global datasets

of land cover (ESA, 2014a), tree cover (Di Miceli et al., 2011)

and tree height (Simard et al., 2011), were used to predict the

map errors using a Random Forest model (Breiman, 2001)

calibrated on the basis of the reference dataset. Second, the

error maps of the Saatchi and Baccini datasets were clustered

using the K-Means approach. The use of eight clusters (hence,

eight error strata) was considered a sensible trade-off between

homogeneity of the errors of the input maps and number of

reference observations available per stratum, with a larger

number of clusters providing only a marginal increase in

homogeneity but leading to a small number of reference data

in some strata (Fig. S2). In areas where the predictors pre-

sented no data (i.e., outside the coverage of the Baccini map)

or for classes of the categorical predictor without reference

data (i.e., land cover), the error strata (instead of the error

maps) were predicted using an additional Random Forest

model based on predictors without missing values (i.e.,

Saatchi map, tree cover and tree height) and 10 000 training

data randomly extracted from the stratification map.

This method produced a stratification map that identified

eight strata for each continent with homogeneous error patterns

in the input maps (Fig. S3). The root mean square error (RMSE)

computed on the Out-Of-Bag data (i.e., data not used for train-

ing) of the Random Forest models that predicted the errors of

the input maps ranged between 22.8 � 0.3 Mg ha�1 (Central

America) to 83.7 � 2.5 Mg ha�1 (Africa), with the two models

(one for each input map) achieving similar accuracies in each

continent (Table S4, Fig. S4). In most cases the main predictors

of the errors of the input maps were the biomass values of the

maps themselves, followed by tree cover and tree height, while

land cover was always the least important predictor (Table S5).

Further details on the processing of the input data are provided

in the Supplementary Information.

The use of a stratification based on the errors of the input

maps was compared with stratifications based on land cover

(used by Ge et al., 2014), tree cover and tree height. A separate

stratification map was obtained for each of these alternative

variables by aggregation into eight strata (to maintain compa-

rability with the number of clusters used in the error strata),

and each stratification map was used to develop a specific

fused map. The performance of alternative stratification

approaches was assessed by validating the respective fused

maps (see Supplementary Information – Alternative stratifica-

tion approaches). The results demonstrated that the stratifica-

tion based on error modelling and clustering (i.e., the error

strata) produced a fused map with higher accuracy than that

of the maps based on other stratification approaches, and

therefore was used in this study (Fig. S5).

Modelling approach

The fusion model. The integration of the two input maps was

performed with a fusion model based on the concept pre-

sented by Ge et al. (2014) and further developed for this study.

The fusion model consists of bias removal and weighted linear

averaging of the input maps to produce an output with

greater accuracy than each of the input maps. The reference

AGB dataset described above was used to calibrate the model

and to assess the accuracy of the input and fused maps. A

specific model was developed for each stratum.

Following Ge et al. (2014), the p input maps for locations

s2D, where D is the geographical domain of interest common

to the input maps, were combined using a weighted linear

average:
fðsÞ ¼

Xp

i¼1
wiðsÞ � ðziðsÞ � viðsÞÞ ð1Þ

where f is the fused map, the wi(s) are weights, zi the estimate

of the i-th input map and vi(s) is the bias estimate. The bias

term was computed as the average difference between the

input map and the reference data for each stratum. The

weights were obtained from a statistical model that assumes

the map estimates zi to be the sum of the true biomass bi with a

bias term vi and a random noise term ei with zero mean for

each location s2D. We further assumed that the ei of the input

maps are jointly normally distributed with variance-covar-

iance matrix C(s). Differently from Ge et al. (2014), C(s) was

estimated using a robust covariance estimator as implemented

by the ‘robust’ package in R (Wang et al., 2014), which uses the

Stahel-Donoho estimator for strata with fewer than 5000 obser-

vations and the Fast Minimum Covariance Determinant esti-

mator for larger strata. Under these assumptions, the variance

of the estimation error of the fused map f(s) is minimized by

calculating the weights w(s) as outlined by Searle (1971, p. 89):

wðsÞT ¼ ð1TCðsÞ�11Þ�11TCðsÞ�1 ð2Þ

where 1 = [1, . . ., 1]T is the transpose of the p-dimensional unit

vector. The weights computed for each stratum sum to 1, while

their values are approximately inversely proportional to the

error variance of the corresponding input map. Larger weights

are assigned to input maps with lower error variances,

although the covariance between map errors influences the

weights as well. Overall, the fused map is expected to provide

more accurate estimates after bias removal and weighted aver-

aging of the input maps. The fusion model assured that the

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139
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variance of the error in the fused map was smaller than that of

the input maps (Bates & Granger, 1969), especially if the errors

associated with these maps were not strongly positively corre-

lated and their error variances were close to the smallest error

variance. The fusion model can be applied to any number of

input maps. Where there is only one input map, the model esti-

mates and removes its bias and the weights are set equal to 1.

The model parameters. The fusion model computed a set of

bias and weight parameters for each stratum and continent on

the basis of their respective reference data, and used these for

the linear weighted combination of the input maps (Table S6).

Since the stratification approach grouped together data with

similar error patterns, the biases varied considerably among

the strata and could reach values up to �200 Mg ha�1. How-

ever, considering the area of the strata, the biases of both input

maps were smaller than �45 Mg ha�1 for at least 50% of the

area of all continents and smaller than �100 Mg ha�1 for 81–

98% of the area of all continents.

Postprocessing

Predictions outside the coverage of the Baccini map. The Bac-

cini map covers the tropical belt between 23.4 degree north lat-

itude and 23.4 degree south latitude while the Saatchi map

presents a larger latitudinal coverage (Fig. 2). The fusion

model was first applied to the area common to both input

maps (Baccini extent) and then extended to the area where

only the Saatchi map is available. In the latter area, the model

focused only on removing the bias of the Saatchi map using

the values estimated for the Baccini extent. The model predic-

tions for the Saatchi extent were mosaicked to those for the

Baccini extent using a smoothing function (inverse distance

weight) on an overlapping area of 1 degree within the Baccini

extent between the two maps. Water bodies were masked over

the whole study area using the ESA CCI Water Bodies map

(ESA, 2014b). The resulting fused map was projected to an

equal area reference system (MODIS Sinusoidal) before com-

puting the total AGB stocks for each continent, which were

obtained by summing the products of the AGB density of each

pixel with their area.

Assessing AGB in intact and nonintact forest. The AGB esti-

mates of the fused and input maps in forest areas were further

investigated regarding their distribution in ecozones and

between intact and nonintact landscapes. Forest areas were

defined as areas dominated by tree cover according to the

GLC2000 map (Bartholom�e & Belward, 2005). Ecozones were

defined according to the Global Ecological Zone (GEZ) map

for the year 2000 (FAO, 2000). The intact landscapes were

defined according to the Intact Forest Landscape (IFL) map

for the year 2000 (Potapov et al., 2008). On the basis of these

datasets, the mean forest AGB density of the fused and input

maps were computed for intact and nonintact landscapes for

each continent and major ecozone. To allow direct comparison

of the results among the maps, the analysis was performed

only for the area common to all maps (Baccini extent). In addi-

tion, to reduce the impact of spatial inaccuracies in the maps,

only ecozones with IFL intact forest areas larger than

1000 km2 were considered. The mean AGB density of intact

and nonintact forests per continent was computed as the area-

weighted mean of the contributing ecozones.

Validation and uncertainty

Validation of the fused and input maps was performed by

randomly splitting the reference data into a calibration set

(70% of the data) and a validation set (remaining 30%). The ‘fi-

nal’ fused map presented in Fig. 3 used 100% of the reference

data while for validation purposes a ‘test’ fused map was pro-

duced using only the calibration data. The estimates of the

‘test’ fused map, as well as those of the input maps, were com-

pared with the validation data. Note that validation of the

‘test’ fused map only yields an approximate (i.e., conservative)

estimate of the accuracy of the ‘final’ fused map. In other

words, the ‘final’ fused map is likely more accurate than the

‘test’ fused map because it uses a larger calibration data set.

To maintain full independence, validation data were not used
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50 - 75
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150 - 200

200 - 300
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Fig. 3 Fused map, representing the distribution of live woody aboveground biomass (AGB) for all land cover types at 1-km resolution

for the tropical region.
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for any step related to the development of the ‘test’ fused

map, including production of the stratification map. To

account for any potential impacts of the random selection of

validation data, the procedure was repeated 100 times, com-

puting a new random selection of the calibration and valida-

tion datasets with each iteration. This procedure allowed

computing the mean RMSE and assessing its standard devia-

tion for the fused and input maps.

The uncertainty of the fused map was computed with

respect to model uncertainty, not including the error sources

in the input data (see ‘Discussion’). The model uncertainty

consisted of the expected variance of the error of the fused

map (which is assumed to be bias-free) and was derived for

each stratum from C(s). The uncertainty was thus estimated

per strata and not at the pixel level. The error variance was

converted to an uncertainty map by reclassifying the stratifica-

tion map, where the stratum value was converted to the

respective error variance computed for each stratum and con-

tinent.

Results

Biomass map

The fusion model produced an AGB map at 1-km reso-

lution for the tropical region, with an extent equal to

that of the Saatchi map (Fig. 3). In terms of stocks, the

AGB estimates within the fused map were lower than

both input maps at continental level. The total stock of

the fused map for the tropical belt covered by the Bac-

cini map (23.4 N–23.4 S, see Fig. 2) was 375 Pg dry

mass, 9% and 18% lower than the Saatchi (413 Pg) and

Baccini (457 Pg) estimates, respectively. Considering

the larger extent of the Saatchi map, the fused map esti-

mate was 462 Pg, 15% lower than the estimate of the

Saatchi map (545 Pg) (Table S7).

Moreover, the fused map presented spatial patterns

that differed substantially from both input maps

(Fig. 4): the AGB estimates were higher than the Saatchi

and Baccini maps in the dense forest areas in the Congo

basin, in West Africa, in the north-eastern part of the

Amazon basin (Guyana shield) and in South-East Asia,

and lower in Central America and in most dry vegeta-

tion areas of Africa. In the central part of the Amazon

basin the fused map showed lower estimates than the

Baccini map and higher estimates than the Saatchi map,

while in the southern part of the Amazon basin these

differences were inversed. Similar trends emerged

when comparing the maps separately for intact and

nonintact forest ecozones (Supporting Information). In
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Fig. 4 Difference maps obtained by subtracting the fused map from the Saatchi map (a) and the Baccini map (b).
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addition, the average difference between intact and

nonintact forests was larger than that derived from the

input maps in Africa and Asia, similar or slightly larger

in South America, and smaller in Central America

(Fig. S6).

According to the fused map, the highest AGB density

(>400 Mg ha�1) is found in the Guyana shield, in the

central and western part of the Congo basin and in the

intact forest areas of Borneo and Papua New Guinea.

The analysis of the distribution of forest AGB in intact

and nonintact ecozones showed that the mean AGB

density was greatest in intact African (360 Mg ha�1)

and Asian (335 Mg ha�1) forests, followed by intact for-

ests in South America (266 Mg ha�1) and Central

America (146 Mg ha�1) (Fig. S6). AGB in nonintact for-

ests was much lower in all regions (Africa, 78 Mg ha�1;

Asia, 211 Mg ha�1; South America, 149 Mg ha�1; and

Central America, 57 Mg ha�1) (Fig. S6).

Validation

The validation exercise showed that the fused map

achieved a lower RMSE (a decrease of 5–74%) and bias

(a decrease of 90–153%) than the input maps for all

continents (Fig. 5). While the RMSE of the fused map

was consistently lower than that of the input maps but

still substantial (87–98 Mg ha�1) in the largest conti-

nents (Africa, South America and Asia), the mean error

(bias) of the fused map was almost null in most cases.

Moreover, in the three main continents the bias of the

input maps tended to vary with biomass, with overesti-

mation at low values and underestimation at high val-

ues, while the errors of the fused map were more

consistently distributed (Fig. 6). When computing the

error statistics for the pan-tropics (Baccini extent) as the

average of the regional validation results weighted by

the respective area coverage, the mean bias (in absolute

terms) for the fused, Saatchi and Baccini maps was 5,

21 and 28 Mg ha�1 and the mean RMSE was 89, 104

and 112 Mg ha�1, respectively (Fig. 5). The accuracy of

the input maps reported above was computed using

the validation dataset (30% of the reference dataset) to

be consistent with the accuracy of the fused map. The

accuracy of the input maps was also computed using

all reference data and the results (Table S3) were simi-

lar to those based on the validation dataset.

Uncertainty map

The uncertainty of the model predictions indicated that

the standard deviation of the error of the fused map for

each stratum was in the range 11–108 Mg ha�1, with

largest uncertainties in areas with largest AGB esti-

mates (Congo basin, Eastern Amazon basin and Bor-

neo). When computed in relative terms (as a percentage

of the AGB estimate), the model uncertainties pre-

sented opposite patterns, with uncertainties larger than

the estimates (>100%) in the low AGB areas

(<20 Mg ha�1 on average) of Africa, South America

and Central America, while high AGB forests

(>210 Mg ha�1 on average) had uncertainties lower

than 25% (Fig. 7). The uncertainty measure derived

from C(s) was computed only when two or more input

maps were available. Hence, it could not be calculated

for Australia because the model for this continent was

based on only one input map (Saatchi map).
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Discussion

Biomass patterns and stocks emerging from the reference
data

The AGB map produced with the fusion approach is

largely driven by the reference dataset and essentially

the method is aimed at spatializing the AGB patterns

indicated by the reference data using the support of the

input maps. For this reason, great care was taken in the

preprocessing of the reference data, which included a

two-step quality screening based on metadata analysis

and visual interpretation, and their consolidation after

stratification. As a result, the reference dataset provides

an unprecedented compilation of AGB estimates at

1-km resolution for the tropical region, covering a

wide range of vegetation types, biomass ranges and

ecological regions across the tropics. It includes the

most comprehensive and accurate tropical field plot

networks and high-quality maps calibrated with air-

borne LiDAR, which provide more accurate estimates

compared to those obtained from other sensors (Zolkos

et al., 2013). The main trends present in the fused map

emerged from the combination of different and inde-

pendent reference datasets and are in agreement with

the estimates derived from long-term research plot net-

works (Malhi et al., 2006; Lewis et al., 2009, 2013; Phil-

lips et al., 2009; Slik et al., 2010, 2013) and high-

resolution maps (Asner et al., 2012a,b, 2013, 2014a).

Specifically, the AGB patterns in South America repre-

sent spatial trends described by research plot networks

in the dense intact and nonintact forests in the Amazon

basin, forest inventory plots collected in the dense for-

ests of Guyana and samples extracted from AGB maps

for Colombia and Peru representing a wide range of

vegetation types, from arid grasslands to humid forests.

Similarly, AGB patterns depicted in Africa were

derived from a combination of various research plots in

dense undisturbed forest (Gabon, Cameroon, Demo-

cratic Republic of Congo, Ghana, Liberia), inventory

plots in forest concessions (Democratic Republic of

Congo), AGB maps in woodland and savannah ecosys-

tems (Uganda, Mozambique) and research plots and

maps in montane forests (Ethiopia, Madagascar). Most

vegetation types in Central America, Asia and Aus-

tralia were also well-represented by the extensive forest

inventory plots (Indonesia, Vietnam and Laos) and

high-resolution maps (Mexico, Panama, Australia).

In spite of the extensive coverage, the current data-

base is far from being representative of the AGB vari-

ability across the tropics. As a consequence, the model

estimates are expected to be less accurate in contexts

not adequately represented. In the case of the fusion

approach, this corresponds to the areas where the input

maps present error patterns different than those identi-

fied in areas with reference data: in such areas the

model parameters used to correct the input maps (bias

and weight) may not adequately reflect the errors of the

input maps and hence cannot optimally correct them.

In particular, deciduous vegetation and heavily dis-

turbed forest of Africa and South America, and large

parts of Asia were lacking quality reference data. More-

over, even though plot data were spatially distributed

over the central Amazon and the Congo basin, large

extents of these two main blocks of tropical forest have

never been measured (cf. maps in Lewis et al., 2013;

Mitchard et al., 2014). Considering the evidence of sig-

nificant local differences in forest structure and AGB

density within the same forest ecosystems (Kearsley

et al., 2013), additional data are needed to strengthen

the confidence of the fused map as well as that of any

other AGB map covering the tropical region. Moreover,

a dedicated gap analysis to assess the main regions

lacking AGB reference data and identify priority areas

for new field sampling and LiDAR campaigns would

be very valuable for future improved biomass map-

ping.

Regarding the AGB stocks, a previous study showed

that despite their often very strong local differences, the

two input maps tended to provide similar estimates of

total stocks at national and biome scales and presented

an overall net difference of 10% for the pan-tropics

(Mitchard et al., 2013). However, such convergence is

mostly due to compensation of contrasting estimates

when averaging over large areas. The larger differences

with the estimates of the present study (9% and 18%)

suggest an overestimation of the total stocks by the

input maps. This is in agreement with the results of

two previous studies that, on the basis of reference

maps obtained by field-calibrated airborne LiDAR data,

identified an overestimation of 23–42% of total stocks in

the Saatchi and Baccini maps in the Colombian Ama-

zon (Mitchard et al., 2013) and a mean overestimation

of about 100 Mg ha�1 for the Baccini map in the

Colombian and Peruvian Amazon (Baccini & Asner,

2013).

In general, the AGB density values of the fused map

were calibrated and therefore in agreement with the

existing estimates obtained from plot networks and

high-resolution maps. The comparison of mean AGB

values in intact and nonintact forests stratified by eco-

zone provided further information on the differences

between the maps. The mean AGB values of the fused

map in nonintact forests were mostly lower than those

of the input maps, suggesting that in disturbed forests

the AGB estimates derived from stand height parame-

ters retrieved by spaceborne LiDAR (as in the input

maps) tend to be higher compared to those based on

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139
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tree parameters or very high-resolution airborne

LiDAR measurements (as in the fused map and refer-

ence data). This difference occurred especially in

Africa, Asia and Central America while it was less evi-

dent in South America and Australia. By contrast, the

differences among the maps for intact forests varied by

continent, with the fused map having, on average,

higher mean AGB values in Africa, Asia and Australia,

lower values in Central America, and variable trends

within South America, reflecting the different allomet-

ric relationships used by the various datasets in differ-

ent continents.

As mentioned above, a larger amount of reference

data, ideally acquired based on a clear statistical sam-

pling design instead of one that is opportunistic, will be

required to confirm such conclusions. While dense

sampling of tropical forests using field observations is

often impractical, new approaches combining sufficient

ground observations of individual trees at calibration

plots with airborne LiDAR measurements for larger

sampling transects would allow a major increase in the

quantity of calibration data. In combination with wall-

to-wall medium resolution satellite data (e.g., Landsat)

these may be capable of achieving high accuracy over

large areas (10–20% uncertainty at 1-ha scale) while

being cost-effective (e.g., Asner et al., 2013; Asner &

Mascaro, 2014b). In addition, new technologies, such as

Terrestrial Laser Scanning (TLS), allows for better esti-

mates at ground level (Calders et al., 2015; Gonzalez de

Tanago et al., 2015), considerably reducing the uncer-

tainties of field estimates based on generalized allomet-

ric equations and avoiding destructive sampling.

Nevertheless, since floristic composition influences

AGB at multiple scales (e.g., the strong pan-Amazon

gradient in wood density shown by Ter Steege et al.,

2006) such techniques benefit from extensive and pre-

cise measurements of tree identity to determine wood

density patterns and to account for variations in hollow

stems and rottenness (Nogueira et al., 2006). Moreover,

we note that the reference data do not include lianas,

which may constitute a substantial amount of woody

stems, and their inclusion would allow to obtain more

correct estimates of total AGB of vegetation (Phillips

et al., 2002; Schnitzer & Bongers, 2011; Dur�an & Gianoli,

2013).

Additional error sources

Apart from the uncertainty of the fusion model

described above (see ‘Uncertainty’), three other sources

of error were identified and assessed in the present

approach: (1) errors in the reference dataset; (2) errors

due to temporal mismatch between the reference data

and the input maps; (3) errors in the stratification map.

Errors in the reference dataset. The reference dataset is not

error-free but it inherits the errors present in the field

data and local maps. In addition, additional uncertainties

are introduced during the preprocessing of the data by

resampling the maps and upscaling the plot data to 1-

km resolution. In particular, while the geolocation error

of the original datasets was considered relatively small

(<50 m) since plot coordinates were collected using GPS

measurements and the AGB maps were based on satel-

lite data with accurate geolocation (i.e., Landsat, ALOS,

MODIS), larger errors (up to 500 m, half a pixel) could

have been introduced with the resampling of the 1-km

input maps. All these error sources were minimized by

selecting only the datasets that fulfilled certain quality

criteria and by further screening them through visual

analysis of high-resolution images available on the

Google Earth platform, discarding the data not represen-

tative of the respective map pixels. In case of reference

data that clearly did not match with the high-resolution

images and/or with the input maps (e.g., reporting no

AGB in dense forest areas or high AGB on bare land),

the data were considered as an error in the reference

dataset, a geolocation error in the plots or maps, or it

was assumed that a land change process occurred

between the plot measurement and the image acquisi-

tion time (see next paragraph).

Errors due to temporal mismatch. The temporal difference

of input and reference data introduced some uncertainty

in the fusion model. The input maps refer to the years

2000–2001 (Saatchi) and 2007–2008 (Baccini) while the

reference data mostly spanned the period 2000–2013.
Therefore, the differences between the input maps and

the reference data may also be due to a temporal mis-

match of the datasets. However, changes due to defor-

estation were most likely excluded during the visual

selection of the reference data, when high-resolution

images showed clear land changes (e.g., bare land or

agriculture) in areas where the input maps provided

AGB estimates relative to forest areas (or vice-versa,

depending on the timing of acquisition of the datasets).

However, changes due to forest regrowth and degrada-

tion events that did not affect the forest canopy could

not be considered with the visual analysis and may have

affected the mismatch observed between the reference

data and the input maps (<58–80 Mg ha�1 for 50% of the

cases of the Saatchi and Baccini maps, respectively). Part

of the mismatch was in the range of AGB changes that

can be attributes to regrowth (1–13 Mg ha�1 year�1)

(IPCC, 2003) or low-intensity degradation (14–
100 Mg ha�1, or 3–15% of total stock) (Asner et al., 2010;

Pearson et al., 2014). On the other hand, considering the

limited area affected by degradation (about 20% in the

humid tropics) (Asner et al., 2009), the temporal mis-

© 2015 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.13139

12 V. AVITABILE et al.



match could be responsible only for a correspondent

part of the differences observed between the reference

data and the input maps. Small additional offsets may

also be caused by the documented secular changes in

AGB density within intact tropical forests, which has

been increasing by 0.2–0.5% per year (Phillips et al.,

1998; Chave et al., 2008; Phillips & Lewis, 2014). It should

also be noted that the reference data were used to opti-

mally integrate the input maps, and in the case of a tem-

poral difference the fused map was ‘actualized’ to the

state of the vegetation when the reference data were

acquired. The reference data were acquired between

2000 and 2013, and their mean acquisition year weighted

by their contribution to the fusion model (by continent)

corresponds to the period 2007–2010 (2007 in Africa,

2008 in Central America, 2009 in South America and

2010 in Asia). Therefore the complete fused map cannot

be attributed to a specific year andmore generally it rep-

resents the first decade of the 2000s.

Errors in the stratification map. The errors in the stratifi-

cation map (i.e., related to the prediction of the errors

of the input maps) were still substantial in some areas

and affected the fused map in two ways. First, the refer-

ence data that were erroneously attributed to a certain

stratum introduced ‘noise’ in the estimation of the

model parameters (bias and weight), but the impact of

these ‘outliers’ was largely reduced by the use of a

robust covariance estimator. Second, erroneous predic-

tions of the strata caused the use of incorrect model

parameters in the combination of the input maps. The

latter is considered to be the main source of error of the

fused map and indicates that the method can achieve

improved results if the errors of the input maps can be

predicted more accurately. However, additional analy-

sis showed that, on average, fused maps based on alter-

native stratification approaches achieved lower

accuracy than the map based on an error stratification

approach (Fig. S5). Therefore, this approach was pre-

ferred over a stratification based on an individual bio-

physical variable (e.g., tree cover, tree height, land

cover or ecozone).

Application of the method at national scale

The fusion method presented in this study allows for

the optimal integration of any number of input maps to

match the patterns indicated by the reference data.

However, the accuracy of the fused map depends on

the availability of reference data representative of the

error patterns of the input maps. While the current ref-

erence database does not represent adequately all error

strata for the tropical region, and the model estimates

are expected to have lower confidence in under-repre-

sented areas, the proposed method may be applied

locally and provide improved AGB estimates where

additional reference data are available. For example,

the fusion method may be applied at national level

using existing forest inventory data, research plots and

local maps that cover only part of the country to cali-

brate global or regional maps, which provide national

coverage but may not be tailored to the country context.

Such country-calibrated AGB maps may be used to

support natural resource management and national

reporting under the REDD+ mechanism, especially for

countries that have limited capacities to map AGB from

remote sensing data (Romijn et al., 2012). Considering

the increasing number of global or regional AGB

datasets based on different data and methodologies

expected in the coming years, and that likely there will

not be a single ‘best map’ but rather the accuracy of

each will vary spatially, the fusion approach may allow

to optimally combine and adjust available datasets to

local AGB patterns identified by reference data.
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