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Satellite L-band synthetic aperture radar backscatter data from 1996 and 2007 (from JERS-1 and ALOS PALSAR
respectively), were used with field data collected in 2007 and a back-calibration method to produce biomass
maps of a 15 000 km2 forest–savanna ecotone region of central Cameroon. The relationship between the radar
backscatter and aboveground biomass (AGB) was strong (r2=0.86 for ALOS HV to biomass plots, r2=0.95
relating ALOS-derived biomass for 40 suspected unchanged regions to JERS-1 HH). The rootmean square error
(RMSE) associatedwith AGB estimation varied from~25% for AGBb100 Mg ha−1 to ~40% for AGBN100Mg ha−1

for the ALOS HV data. Change detection showed a significant loss of AGB over high biomass forests, due to
suspected deforestation and degradation, and significant biomass gains along the forest–savanna boundary,
particularly in areas of low population density. Analysis of the errors involved showed that radar data can detect
changes in broad AGB class in forest–savanna transition areas with an accuracy N95%. However, quantitative
assessment of changes in AGB in Mg ha−1 at a pixel level will require radar images from sensors with similar
characteristics collecting data from the same season over multiple years.
itchard).
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1. Introduction

The interface between tropical forest and savanna in west and
central Africa is a wide, structurally and floristically diverse mosaic of
vegetation types, with forest penetrating deeply into the savanna
biome as gallery forests along river banks, and also as forest patches
on plateaus and in between rivers (Dai et al., 2004; Hely et al., 2006;
Menaut, 1983). The savannas in this region are not maintained by
precipitation, there being enough rainfall to support full canopy
closure except in the poorest or inundated soils. Instead they are
maintained largely by anthropogenic disturbance such as fire and
clearance for grazing, agriculture and timber (Bucini & Hanan, 2007;
Sankaran et al., 2005). Changes in these disturbance regimes can
therefore result in rapid changes in the woody cover of this region.
Due to the large extent of the tropical forest–savanna ecotone in Africa
(1.28 million km2 is forest–savanna mosaic, compared with 2.36 mil-
lion km2 forest and 4.12 million km2 woodland; Mayaux et al., 2004),
any changes in the woody vegetation cover and the resulting
feedbacks could have significant implications for biodiversity and
the carbon cycle (Lewis, 2006). Such ecotones are also important as
they are transitional habitats that appear to be areas of evolutionary
dynamism, storing genetic diversity and acting as an important locus
for the generation of new species (Smith et al., 1997, 2001).

Dynamics of woody vegetation in this ecotone are the result of the
integration of a variety of different competing processes, each of
largely unknown magnitude and spatial distribution. Forest is being
cleared for agriculture, and woody savannas are often burnt to assist
agriculture and cattle grazing (FAO, 2007; Zhang et al., 2006). Forest
and woody savannas are also undergoing degradation, especially
around settlements, for timber (legal logging concessions and illegal
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extraction), wood fuel and charcoal (Goetze et al., 2006; Mertens &
Lambin, 2000). Changes in climate also have the potential to alter the
area of forest and savanna, for example increases in dry season length
will favor savanna, as would rising temperatures (Dai et al., 2004;
Hely et al., 2006; Zeng & Neelin, 2000). In contrast, there are also
processes that could cause forest to expand into savanna and
savannas to increase in woodiness: reduced anthropogenic fire,
caused by reduced human activity in an area; increased CO2

concentration, which has the potential to increase tree growth in
forests and therefore biomass (Lewis et al., 2004, 2009) by favoring
the growth of trees with a C3 photosynthetic pathway, over grasses
that have a C4 pathway1 (Lloyd & Farquhar, 1996, 2008); and if
rainfall increased, which would again favor trees over grasses (Hely
et al., 2006).

It has been suggested that forest is expanding into savannas in
central Africa because of urban-migration and a consequent reduction
in fire frequency (Boulvert, 1990). Indeed, this forest encroachment
has been found to be occurring in other tropical forest–savanna
ecotones, including northern Australia (Bowman et al., 2001; Brook &
Bowman, 2006; Hopkins et al., 1996), the Western Ghats of India
(Puyravaud et al., 2003), and South America (Duarte et al., 2006;
Durigan & Ratter, 2006; Marimon et al., 2006). However, little
quantitative analysis followed Boulvert's initial observations in Africa:
a literature search found only three studies reporting woody
expansion in African tropical forest–savanna transitions, though
there is much evidence of woody encroachment in semi-arid
environments in Africa (Archer et al., 2001; Eamus & Palmer, 2007).
In an ecotonal region of central Cameroon, optical remote sensing
data and field measurements were used to show that over a period of
40 years (1950–1990), gallery forests encroached into the savanna
landscape at a rate of 0.6 to 2 m a year (Happi, 1998). In eastern
Cameroon, analysis of soil carbon isotopes (13C/12C, 14C) along two
transects showed both significant expansion of the forest, and that
increased woody cover of the savanna has occurred over the past
century (Guillet et al., 2001). In Budongo Forest Reserve, Uganda, a
combination of field studies and vegetation index-based satellite
change detection were used to demonstrate a 14% increase in woody
vegetation (Nangendo, 2005). In combination, these studies provide
some evidence that forest expansion is occurring, but none used a
method that can be extrapolated to larger areas without a huge
investment of resources: all involved extensive field studies or the
manual interpretation of high-resolution remotely sensed images.

The use of space-borne radar backscatter data is becoming
increasingly accepted as a useful method for measuring woody
biomass overmuch larger areas in the tropics because of the capability
of radar to penetrate through the forest canopy, and its capacity for
all-weather acquisition (Lu, 2006; Ribeiro et al., 2008; Sano et al.,
2005; Santos et al., 2002). Radar data are likely to be particularly
applicable to forest–savanna boundary regions, as theory suggests
there will be a substantial increase in backscatter as both the density
and size of trees increase (Podest & Saatchi, 2002; Woodhouse, 2006),
and biomass changes from savanna to forest are in the lower biomass
ranges, where radar is most sensitive. As radar backscatter responds
to the density, size, orientation, and water content of scattering
1 C3 photosynthesis is the photosynthetic pathway that occurs in most plants
including all trees. C4 photosynthesis is an alternative used by some grasses, including
the majority found in this area, that gives increased efficiency of photosynthesis with
respect to water ‘use’ (i.e. water loss through transpiration), and is therefore beneficial
in drier and hotter environments (Taiz & Zeiger, 2006). However, the advantage which
C4 plants have over C3 plants is reduced as the concentration of CO2 in the atmosphere
increases (energetically costly adaptations that increase the concentration of CO2 in
leaf cells becomes less advantageous; Lloyd & Farquhar, 2008). Thus increasing CO2

concentrations could be responsible for woody encroachment by reducing the
competitiveness of C4 grasses compared with C3 plants. However, increasing
temperatures or a reduction in rainfall, that may occur concurrently with an increase
in CO2 concentration, could negate this effect by increasing the competitive advantage
of C4 grasses over C3 trees.
elements on the surface (Rosenqvist et al., 2007), rather than just the
color and density of leaves, it has the potential to be more sensitive to
changes in the woodiness of savanna than spectral data. This is
especially true because the radar signal will be much less sensitive to
grasses than spectral data, especially when longer radar wavelengths
are used. The spectral vegetation signal from trees can be very hard to
distinguish from that of grasses unless hyperspatial data, capable of
resolving individual trees (Lu, 2006), or multi-temporal data which
enables the phenology of different landcover types to be separated
(Loveland et al., 2000), are used.

The successful launch of the Advanced Land Observing Sattelite's
Phased Array-type L-band Synthetic Aperture Radar (ALOS PALSAR)
in 2006 has increased the potential to use radar to measure biomass,
as this is the first long-wavelength (L-band, 23-cm wavelength)
synthetic aperture radar (SAR) satellite sensor to have the capability
of collecting cross-polarized (HV, horizontal-send, vertical receive)
data in addition to horizontal-send, horizontal-receive (HH) data. This
is an advantage for detecting biomass because for HV only scattering
elements that change the polarization of the incoming electromag-
netic radiation will be detected, so complex three-dimensional
structures such as trees will produce a strong response, but soil
moisture, which does not change the polarization of the incoming
radiation, will not be detected.

Radar has been used only rarely to quantify biomass in forest–
savanna transition regions, though when used it has been with
considerable success (Lucas et al., 2000; Ribeiro et al., 2008; Sano et
al., 2005; Santos et al., 2002). It has to our knowledge never previously
been used for long-term biomass change detection in forest–savanna
transition regions, despite the availability and potential of the data.
Here, we compare satellite L-band radar data from 1996 and 2007
over a large ecotonal region of central Cameroon, both to assess
changes in aboveground woody biomass in this region, and as a proof
of concept for its application for large scale monitoring of changes in
biomass from space.

2. Study area

The study area covers a 15 000 km2 region in central Cameroon,
centered around 6°4′18″ N, 12°53′18″ E, encompassing the Mbam
Djerem National Park and the surrounding area to the north and east
(Fig. 1). This region was chosen as it extends across a range of tropical
vegetation types, from humid forests contiguous with the Congo Basin
tropical forest belt in the south to savanna with narrow gallery forests
in the north. It experiences an annual rainfall of 1720 mm, with a
standard deviation of 213 mm (derived from Tropical Rainfall
Measuring Mission (TRMM) 3B43 V6 data from January 1998 to
December 2008). There is a pronounced dry season from December to
March, with an average rainfall of 20 mm per month. The Mbam
Djerem National park was established in the year 2000 as an
expanded version of the longer-standing Pangare Djerem reserve
with funds from Chad-Cameroon Pipeline Project, and is currently
maintained by the Wildlife Conservation Society. It has a high
species diversity, containing over 360 bird and 50 mammal species
(Anonymous, 2007), and is regarded as having critical importance for
the preservation of Central African biodiversity (Doumenge et al.,
2003). The park itself has a very low human population density, with
almost no permanent residents. Major anthropogenic disturbances in
the park are fishing, bushmeat hunting in the southern forests, and
grazing accompanied by burning in areas along the northern forest–
savanna boundary. The regions surrounding the park are more
populated, especially on the eastern side, with the two major towns
being Tibati on the western side of Lake Mbakaou, and Ngaoundal in
the northeast of the study area. The population of both towns has
increased by approximately 85% in the past twenty years, from 15 522
and 11 382 respectively in 1987 to 28 981 and 21 239 in 2006 (CIESIN,
2004; PNUD, 1999).



Fig. 1. A section of a vegetation map of Africa taken fromMayaux et al. (2004), showing the location of the study area within Cameroon, with the ALOS HV 2007 mosaic showing the
Mbam Djerem National Park outlined in red, Tibati in yellow and Ngaoundal in blue.
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3. Methods

3.1. Field data

The study area was visited in October–December 2007 as part of
the Tropical Biomes in Transition project (TROBIT, www.geog.leeds.
ac.uk/research/trobit). Vegetation was sampled in four regions from
the top to the middle of the Mbam Djerem National Park. In all, data
were collected from four one-hectare savanna plots, four one-
hectare forest plots, a pair of 0.4 ha plots (one in transitional forest,
one savanna), and eight 20×200 m transects (8×100 m×100 m;
2×40 m×100 m; 8×20 m×200 m). Seven transects ran from forest
into savanna, and as the transition from forest to savanna was very
sharp (typically occurring in under five meters), they were each split
into a forest and a savanna portion, hence each giving two data
points. We did not sub-divide these transects further (nor divide the
ten larger plots), in order to remove any problems of autocorrela-
tion: all data-points are sufficiently separated in space or vegetation
type to be considered independent. One transect was solely located
in forest, and for this AGB was averaged across its whole length. So,
in total, 25 biomass plots were used in this study, 13 from forest and
transitional forest, and 12 from savanna.

Within these 18 sampling locations data were collected for every
tree with a diameter ≥10 cm at 1.3 m along the stem, or above
buttresses or stem deformities, a forestry convention called ‘diameter
at breast height’ (DBH). The variables used in this study were the
species, DBH, and height (the latter measured for only a subset of
trees). Height was estimated using vertex hypsometers (Laser Vertex
Hypsometer/Vertex Hypsometer III, Haglöf, Sweden). The height of
every tree was measured for the 8 transects and for the remaining 10
plots height was collected for only a random subsample of trees, and
site-specific power-law regression equations used to estimate height
from diameter for the remaining trees (average n=56 trees for each
plot, average RMSEb1.6 m, pb0.001 in all cases). The field sites were
located using a handheld differential GPS (Trimble GeoHX, Trimble,
USA). The GPS positions were later corrected using data from the
SOPAC N'Koltang ground station in Libreville, Gabon, using the
H-STAR differential correction facility in the software GPS Pathfinder
Office 3.10 (Trimble, USA), resulting in accuracies of b0.5 m in the
horizontal direction and b1 m in the vertical.

The aboveground biomass (AGB) in kilograms of each tree was
estimated using the optimal pan-tropical allometric equations as
derived by Chave et al. (2005). For the savanna species the dry forest
equation (Eq. 1) was used, for forest species the moist forest equation
(Eq. 2) was used:

AGB = exp −2:187 + 0:916 ln ρD2H
� �h i

ð1Þ

AGB = exp −2:977 + ln ρD2H
� �h i

ð2Þ

where ρ is the wood mass density (oven-dry wood mass divided by
green volume, g/cm3), D is the DBH in cm at 1.3 m, and H is the tree
height in meters. Species were differentiated into forest and savanna
species based on knowledge of the ecology of the species from BS &
SLL, and in which environment they were predominantly found.
Wood mass density (also known as wood specific gravity) data were
collated from the Global Wood Density Database (Chave et al., 2009;
Zanne et al., 2009), in which wood density values measured at 12% or
18% moisture were converted to wood mass density. We also
calculated biomass for the forest species using the dry forest
allometric equation (Eq. 1). Though this reduced the biomass of the
forest plots by 5–10%, this did not change any of the conclusions
reported in the paper so the results are not shown.

The biomass values produced using the allometric equations and
all three tree-specific variables were then summed and normalized by
the area of the plots to produce estimates of woody AGB in Mg ha−1.
Stems with a DBHb10 cmwere not measured for all plots, so the term
AGB for the remainder of this paper refers to the dry biomass of stems
with a DBH≥10 cm, which are likely to comprise N95% of the woody
biomass in these ecosystems (based on the 8 transects which were
measured to a 5 cm minimum diameter, and pan-African estimates
from Lewis et al., 2009). These larger trees will be the component to
which L-band radar responds most strongly.

http://www.geog.leeds.ac.uk/research/trobit
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3.2. Remote sensing data

JERS-1 HH L-band SAR data were collated from the Global
Rainforest Mapping Project (GRMP) (De Grandi et al., 2000), for the
study area from the beginning and end of the dry season (November
and March) of 1996. The scenes had been geometrically corrected,
radiometrically calibrated, mosaicked into one image, and resampled
from the original 12.5 m pixel spacing to 100 m pixels using wavelet
decomposition, maintaining as much of the true signal as possible
while greatly reducing speckle and noise (De Grandi et al., 2000).
These data were converted from digital number (DN) to sigma0 values
using the equation and calibration coefficients provided by the GRMP
(see http://southport.jpl.nasa.gov/GRFM/), using ENVI 4.4 (ITT, USA):

sigma0 dB½ � = 20⋅ log10 6⋅DN + 250ð Þ−68:2: ð3Þ

The 2007 data comprised four ALOS PALSAR scenes collected in the
FBD (Fine Beam Double-polarization) mode that were acquired from
the Alaska Satellite Facility, having been provided to them by JAXA.
Two were captured on the 26th July 2007, and the other two on the
12th of August 2007. These are, like the JERS data, L-band, but are
polarimetric, including HH and HV polarizations, and were provided
at the original 12.5 m pixel spacing.

Quickbird data (60 cm panchromatic resolution and 2.4 m multi-
spectral resolution) were acquired from Eurimage for all the sites by
purchasing an archive image from 19th February 2004 for the
southern sites and requesting a new acquisition, captured on 30th
January 2008, for the northern sites. These ground-point corrected
Quickbird data are estimated to be geo-correct to b2 m. In order to
reduce speckle noise, the ALOS image was resampled by averaging
blocks of 2×2 pixels to produce an image at 25 m resolution. Areas of
the ALOS scenes covering the field data plots were georeferenced by
eye to the Quickbird data, by using 30 ground control points taken
from features such as islands, small clumps of trees and branching
points of gallery forests, with resulting RMSEb0.4 ALOS pixels (10 m).

The ALOS scenes were converted to sigma0 values using the
following equation and data-specific calibration factors, identical for
all scenes:

sigma0 dB½ � = 10 log10DN
2

� �
+ CF ð4Þ

where CF is the calibration factor, set at−80.2 for the HV polarization
and −83.2 for the HH polarization for scenes generated before 1st
January 2009 (Shimada et al., 2009).

3.3. Radar sensitivity to structure and biomass

The sigma0 values for pixels covering the plots were converted to
the power domain before averaging, to ensure the use of the
arithmetic, not geometric, means. Eighteen of the twenty-five
biomass plots fell on the overlap between the two scenes captured
seventeen days apart. A regression analysis between the two sets of
backscatter values found that they were very well correlated
(dBSE=1.0074(dBSW), r2=0.88, pb0.00001, where dBSE and dBSW
are the sigma0 HV backscatter values for the 18 sites found in both the
south-east and south-west images respectively), and were not
significantly different from each other (paired t-test of difference
not equal to zero, p=0.384), therefore the mean of the two raw
power averages for each site was used in all presented analyses. The
sigma0 values for both polarizations were then regressed against
structural features of the plots (basal area, average height, stem
density and average DBH), and then against the AGB values for each
site. Best fit empirical relationships were then calculated comparing
backscatter with these variables, as no consensus has yet been
reached as to what functional form a priori best describes these
relationships. These comparisons with structural features are impor-
tant as the majority of previous studies relating such data
to backscatter are from temperate plantation forests (Lu, 2006;
Woodhouse, 2005), and as such there is little data from natural
heterogeneous tropical savanna–forest mosaics. All regression ana-
lyses were performed with the software SigmaPlot 10.0 (Systat
Software, USA).
3.4. Biomass change detection

To allow comparison with the JERS data, the ALOS data were
mosaicked and subsequently resampled to 100 m pixels. The JERS
data were then georeferenced to the ALOS data using a network of 40
ground control points, selected by eye, which resulted in an RMSE of
0.48 pixels (48 m); areas in the JERS image not present in the ALOS
mosaic were then masked.

As there were no field data available for this area from 1996, and
the field data collected in 2007 is from areas near the forest edges that
are suspected to have increased in biomass over the preceding eleven
years (Mitchard et al., 2009), it was necessary to back-calibrate the
JERS HH data to the ALOS-derived AGB values from areas that were
unlikely to have changedover the timeperiod. Thismethodology relies
on the fact that there are identifiable areas where AGB is relatively
stable in forest–savanna transition regions and the impacts of
environmental variables on the radar backscatter such as soil and
canopy moisture are relatively small (Hovestadt et al., 1999; Jeltsch et
al., 1999; Ratter, 1992; Santos et al., 2002). Pixels were randomly
selected from the image, and when they were judged to have fallen in
an area that was unlikely to have changed (e.g. dense forest, or known
grassland, confirmed by visual analysis of a Landsat ETM+ scene from
2000 compared with ASTER images from 2006/7), pixel values were
extracted and averaged for a homogeneous area of 5×5 pixels around
this pixel from both images (25 ha). These larger areas were used in
order to limit errors caused by speckle and geolocation problems, with
this averaging across homogeneous areas greatly increasing the
confidence in the relationship produced. A regression between the
ALOS-derived AGB values and the sigma0 values from the JERS image
was then performed, using the same relationship as with ALOS HH to
ensure that the biomass of young and regenerating forests was
calibrated correctly, and the derived relationship used to create a
biomass map for the JERS image. Although there is evidence for a
general increase in AGB across higher biomass tropical African forests
(Lewis et al., 2009), at most this increase would be a small fraction of
the total biomass of these sites (b4%), too small to be detectable by the
radar backscatter data at these high biomass values. Hence we
assumed that no detectable change had occurred in the AGB of the
selected high biomass sites.

The accuracy of the derived relationship between JERS HH and AGB
was evaluated by examining the relationship between ALOS HH and
AGB, as both sensors have similar characteristics and incidence angles.
We did not use the HH channel from both sensors to perform the
change detection directly (using differences in dB value after a cross-
calibration procedure) because the ALOS HH data were acquired in
the wet season and as such were not comparable, as the HH channel
responds strongly to soil moisture as well as to AGB.

The biomass class widths were chosen to be approximately equal
to the RMSE of the biomass estimation at that level, and thus the
classes increase in width as biomass increases, with the highest class
taking as its lowest value the point where there is no evidence of a
significant positive relationship between biomass and backscatter
above that point. The area covered by the different classes at the two
time points was compared, and a change map was produced showing
the changes in average biomass at a 500 m (25 ha) resolution.
Subsequently, an assessment of the sources and likely magnitude of
uncertainties was performed.

http://southport.jpl.nasa.gov/GRFM/
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4. Results

4.1. Field data

In total 4368 trees were measured, representing 205 species from
142 genera and 58 families. AGB measurements for the 25 data points
ranged from 6 to 424 Mg ha−1. Table 1 gives the full plot data
combined with the ALOS HH and HV backscatter data. As expected
biomass values were strongly related to basal area, with a fitted linear
relationship giving an r2 of 0.92 (Fig. 2). However the influence of
height and wood density values on the biomass estimates using these
equations can be seen here, as if an allometric equation that used only
DBH values had been used this relationship would have an r2 of 1.
Biomass was also significantly related to average height (r2=0.70)
and to stem density (r2=0.45), though in both cases the quadratic
terms were significant in the regression, suggesting a reduction in the
strength of the relationship at higher biomass values. There was a
weaker but still significant correlation between biomass and the
average DBH for each plot when a quadratic relationship was fitted
(r2=0.30, pb0.01).
4.2. ALOS backscatter sensitivity to vegetation structure

Significant log relationships were found between ALOS HV and HH
sigma0 backscatter and basal area, average height, and stem density
(Fig. 3). No significant relationship was found between average DBH
for the plot and either polarization. As expected, both polarizations
responded most strongly to basal area (HV: r2=0.76, HH: r2=0.55),
with HV having the smaller residuals. HV backscatter responded
almost as strongly to average height (r2=0.73), thoughHH responded
less strongly to this variable (r2=0.48). A loss of sensitivity appeared
to occur quite early in both cases, with a strong relationship with
height up to about 9 m and little evidence of a predictive relationship
above this point. There was a significant response to stem density in
both polarizations (HV r2=0.47, pb0.0005, HH r2=0.48, pb0.0001);
interestingly in this case, HH ismore strongly correlated thanHV, even
Table 1
Biomass (Mg ha−1), stem density (stems ha−1), average height (m), basal area (m2 ha−1) a
was not used in the biomass regression analysis because it was on a steep slope facing aw
relatively flat ground.

Biomass
Mg ha−1

Stem density
stems ha−1

Average height
m

Avera
cm

6.1 42 6.6 11.7
17.4 136 6.5 17.7
24.9 213 6.2 16.4
26.3 108 8.1 20.3
26.4 201 5.7 12.3
34.5 241 8.0 18.5
38.4 315 6.9 18.1
43.2 278 6.2 11.6
46.3 455 5.3 11.4
51.4 249 6.3 15.2
75.1 390 6.7 15.5
87.2 281 7.3 17.7
102.9 575 12.8 11.9
103.1 277 8.9 14.5
107.8 460 15.4 19.1
114.7 797 9.1 11.9
119.7 510 11.8 14.7
141.2 473 12.0 12.4
204.4 642 13.6 13.9
212.3 465 13.6 20.3
240.5 467 16.8 20.8
247.1 641 12.5 13.4
306.97 611 17.4 23.1
456.13 516 14.6 24.6
if only marginally and insignificantly so. This is possibly due to the
influence of ground-trunk scattering, which should increasewith stem
density, and is a more influential component of the HH than HV
backscatter (Woodhouse, 2005).

4.3. ALOS to biomass regression

One biomass plot was on a significant slope (c. 25°), in radar
shadow, and consequently had an anomalously low radar return
(Woodhouse, 2005). It was therefore thought most appropriate to
remove this point from subsequent analyses, as all other plots were
located on comparatively flat ground (0°–7° slope), and therefore
were unsuitable for developing and testing a slope-correction
procedure to apply to the anomalous plot. Attempts were made to
fit a relationship between AGB and a combination of HH and HV
polarizations, however the strongest relationship was found between
ALOS HV sigma0 alone and AGB, using an exponential rise-to-
maximum model, as this best fitted the backscatter data, with the
loss of sensitivity at approximately 150–200 Mg ha−1 well modeled
(see Fig. 4a). This fitted model happens to be equivalent to the simple
Water Cloud Model (Attema & Ulaby, 1978), but the equation was
chosen because it had a higher r2 than any other relationship that was
tested, rather than for theoretical reasons. For this analysis, data
points were weighted according to the square root of their area (Zar,
2007), to correct for the differences between the sizes of the sample
plots. The fitted relationship was:

ALOS HVsigma0 = a + b 1−e−c:AGB
h i

ð5Þ

where a=−16.59±0.46, b=4.63±0.44, and c=0.014±0.004 (un-
certainties in parameter estimation are standard errors). The r2 for the
fitted regression was 0.86, an F-test for the regression found it to be
highly significant (F2,22=63.23, pb0.0001), and the data passed a
Shapiro–Wilk normality test (p=0.47).
nd ALOS 2007 HH and HV sigma0 (dB) are given for all the field plots. The plot in italics
ay from the sensor, and thus in radar shadow, whereas the other plots were all from

ge DBH Basal area
m2 ha−1

ALOS HH
sigma0 dB

ALOS HV
sigma0 dB

1.4 −9.42 −15.72
4.3 −10.26 −16.37
5.9 −9.35 −15.54
4.5 −9.01 −14.69
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To create a biomassmap from the ALOSHV backscatter data Eq. (5)
was rearranged to:

AGB =
1
c
× − ln 1−

ALOSHVsigma0−a

b

" #
: ð6Þ

There was also a good, but weaker, relationship with the ALOS HH
polarization alone, which gives an estimate of the accuracy of the
relationship between JERS HH data from 1996 and AGB (r2=0.64,
F2,22=17.96, pb0.0001, Fig. 4b).

4.4. Accuracy of ALOS-biomass regression

The accuracy of the ALOS HV AGB predictions decrease as biomass
increases (Fig. 5). The overall root mean square error (RMSE) for these
data is 49 Mg ha−1; however this decreases to 29 Mg ha−1 if only
values below 150 Mg ha−1 are considered, and to 24 Mg ha−1 using
only data points b100 Mg ha−1. These results led us to map AGB in
classes chosen to be similar in size to the RMSE at each level: 0–25,
25–50, 50–75, 75–100, 100–150, 150–200, and N200 Mg ha−1. The
large degree of scatter and possible bias observable in Fig. 5 for values
N200 Mg ha−1 suggests that no subdivision of biomass classes above
this point is appropriate.

The relationship between ALOS HH and biomass is clearly noisier,
with a loss of sensitivity occurring earlier than for the HV data, at around
100–150 Mg ha−1 (Fig. 4b). The RMSE values are consequently higher:
65 Mg ha−1 for thewholedataset, 52 Mg ha−1 for pointsb150Mg ha−1,
and 39 Mg ha−1 for values b100 Mg ha−1. Note that the acquisition of
these ALOS datawas in thewet season,where theHHpolarizationwould
be expected to be responding to soil moisture as well as to biomass, and
this perhaps explains the poorer than expected performance at lower
biomass values. The JERS HH data were captured in the dry season and
would therefore be expected to considerably outperform the ALOS HH
backscatter. However, to be conservative, it was assumed that the dry
season JERSHH isonly as accurate as thewet seasonALOSHH. Thusmuch
broader biomass classes were used for the JERS data (and thus also the
change detection): 0–50, 50–100, 100–150, and N150.

4.5. JERS to ALOS-derived biomass regression

A strong relationship was found between the 40 suspected
unchanged areas in the JERS HH sigma0 data from March 1996 (dry
season) with the ALOS HV biomass data (r2=0.95, F2,48=341.1,
pb0.0001; Fig. 6). The equation used was identical to Eq. (5), but with
coefficients: a=−10.98±0.12, b=4.03±0.16, and c=0.014±0.002.
The relationship with the JERS HH sigma0 data from November 1996
(wet season) was less strong (r2=0.72, data not shown), confirming
that radar data are more sensitive to biomass in the dry season. The
reason the r2 is higher here thanwith theALOSHVdata is because of the
large areas used to calibrate the relationship (25 ha each), greatly
reducing the geolocation errors and noise apparent when a relationship
is derived from comparatively small field plots, as in the ALOS to
biomass regression. This higher r2 value should not be taken to show
that JERSHH ismore sensitive to biomass thanALOSHV, as in general its
accuracy is likely to be similar to that for ALOS HH (though in all
likelihood better as the drier conditions should result in less soil
moisture influence). The relationship was used to estimate AGB from
JERS HH imagery and a map was produced by classifying AGB into 4
classes with 50 Mg ha−1 intervals, chosen to capture the estimation
uncertainties predicted using the ALOS HH data (Fig. 7a), the training
data is put in the correct class with a 94% accuracy using these classes.
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For comparison the ALOS HV map with its seven classes is included as
Fig. 7b.

4.6. Change detection

The biomass change map was produced by tracing the number of
biomass classes each 500 m pixel changed between the two periods
(Fig. 7c). Although the ALOS biomass map has smaller intervals and a
larger biomass range, we produced the change map by using
50 Mg ha−1 as the class interval and 150 Mg ha−1 as the upper limit,
as these are the best that can be confidently predicted using the JERS
data. The resulting map shows biomass losses and gains dominating in
different parts of the study area, with losses of higher biomass classes in
the eastern side, and gains on the western side. Changes in the absolute
area covered by each biomass class are also shown in Fig. 8, both for the
whole study area, and for the eastern and western sides individually. A
loss of the high biomass classes dominates the east of the study area,
which appears to be concentrated around the major population centers
and along the railway line (Fig. 9). Here the area covered by forest
N150 Mg ha−1 has declined almost by half, from 2700 km2 in 1996 to
1400 km2 in 2007. However, there are also areas of positive change (i.e.
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Fig. 5. Errors in predicting biomass from the ALOS HV relationship are shown by a) ALOS HV-
and b) the error in ALOS HV biomass prediction plotted against field-measured biomass.
biomass gain), concentrated in the western side of the study area,
particularly in the savanna areas of theMbamDjeremNational Park and
the area north of it. Increases in biomass appear to occur in all the
woodland–savanna areas without a high human population density.
These increases are shown by a reduction in the area of biomass classes
b100 Mg ha−1, and an increase in area for both cover classes
N100 Mg ha−1.

4.7. Uncertainty analysis

There are two major sources of uncertainty in this analysis:
uncertainties in calculating biomass values from field data using
allometric equations, and uncertainties in using radar remote sensing
data to estimate biomass. Uncertainties in the first case seem unlikely
to affect the results of the change detection, so increases and
decreases should be correctly located, but the magnitude of the
biomass classes could be incorrect. Uncertainties inherent in using
radar remote sensing data to estimate biomass across an area may,
however, affect the results of the change detection, and these errors
are particularly uncertain for the JERS data from 1996 as there are no
field data, making an assessment of the accuracy of that classification
0 100 200 300 400 500
-250

-200

-150

-100

-50

0

50

100

150

200

250

E
rr

o
r 

in
 A

L
O

S
 H

V
-p

re
d

ic
te

d
 A

G
B

 (
M

g
 h

a-1
)

) Error in AGB prediction
    against field-measured AGB

Field measured AGB (Mg ha-1)

predicted AGB plotted against field-measured AGB (Mg ha−1), with an x=y line shown,



Fig. 6. a) Location of 40×500 m×500 m suspected unchanged areas used to back-calibrate JERS HH data to ALOS HV-derived AGB, and b) JERS HH sigma0 from 1996 (dB) plotted
against ALOS HV-derived AGB (Mg ha−1) from 2007 for these 40 suspected unchanged 25 ha areas.
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difficult. Here we will subdivide these uncertainties into their major
sources, and estimate the likely contribution from each.
4.7.1. Errors in field data to AGB estimation

4.7.1.1. Uncertainties in diameter, height and species measurements.
Diameter measurements are considered very accurate (Alder &
Synnott, 1992), and though height measurements are less precise, an
in-field assessment, involving re-measuring 10 trees across the full
height range at least 8 times fromdifferent angles and on different days,
suggested that our methods were accurate to greater than ±10%. All
specieswere identified in the field by expert local botanists, and as such
mis-identifications are likely to be relatively few, and given the
similarities of wood density within a genus, unlikely to have a major
effect on the biomass estimation (Chave et al., 2006, 2009).
Fig. 7. Biomass class images produced using a) JERS HH 1996 data and b) ALOS HV 2007 data
classes for the JERS HH 1996 data than the ALOS HV 2007 data; and c) change in 500 m avera
the broader JERS classes).
4.7.1.2. Uncertainties in the allometric equation. It is not possible to use
species-specific, or even region-specific, allometric equations for most
tropical ecosystems, as the species diversity is too large and the
relevant data have not been collected. However using a pan-tropical
equation including height, diameter and species-specific wood
density minimizes overall uncertainty in biomass estimates to an
estimated ±10% (though Chave et al. (2005) optimistically estimate
±5% for the equation we used). This error could be considerably
higher for larger trees, where accurate biomass data are very scarce.

We therefore estimate that the biomass classes used could be
inaccurate by at worst ±20%, assuming a consistent 10% error in
height estimation combined with the allometric equation used that
poorly predicts tree biomass and consistently over- or under-
estimating by a further 10%. The consequence of this is that, for
example, the 100–150 Mg ha−1 biomass class could in fact at worst be
80–120 Mg ha−1 or 120–180 Mg ha−1.
, using scales with the size of biomass classes based on RMSE error values, with broader
ge class (JERS class image subtracted from ALOS class image) for the two images (using

image of Fig.�7


Fig. 8. The total area in km2 against biomass class (Mg ha−1) for the two biomass maps from 1996 and 2007 for: a) the whole data set; b) the less-populatedwestern half of the study
region; and c) the more-populated right hand half.
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4.7.2. Uncertainties in radar to biomass estimation
We now consider the errors involved in putting a pixel into the

correct biomass class. This was estimated using the RMSE values from
the original biomass estimation, as discussed in Section 4.5, though
these RMSE values are likely to overestimate the true error value
because of their small plot size. The biomass class sizes were chosen to
be approximately equal to the RMSE values at the respective biomass
level. Assuming errors are normally distributed, this should result in
approximately 68% of data points being placed in the correct class, and
approximately 95% in the correct class or a neighboring class (Zar,
2007). These are indeed approximated in the field data, with 65% of
Fig. 9. Change in class image using the samemethod as for Fig. 6c. The major towns of Tibati
Park is outlined in blue, roads are shown in white, and the railway line in yellow. Optical clos
3n–2–1), showing the widening of gallery forests and increased woody vegetation on the left
the right-hand pair. Note that the differences in color are caused by the different bands av
responds strongly to vegetation cover, which will mostly be woody in these dry season im
the data points being correctly classified for the ALOS HV data, and
96% being placed in the correct or neighboring class; for ALOS HH
(with the wider biomass classes) these values are 57% and 96%
respectively.

These errors in classifying pixels should, unlike those for the biomass
estimation, be randomlydistributed,withnobias (i.e. there is assumed to
be an equal chance of over- and under-estimation for every point). Thus
while the chances of a randomly chosen pixel being correctly classified is
just 66%, the large number of pixels considered in all the classes suggests
the overall accuracy in estimating the total area of this class is much
higher. This assumptionwould not be valid if the number of pixels varied
and Ngaundal are shown as yellow and blue circles respectively, Mbam Djerem National
e-up images are Landsat ETM+ from 2000 (bands 5–4–3) and ASTER from 2006 (bands
-hand pair, and the rapid clearing of woody vegetation around the town of Ngaundal on
ailable from two sensors, however in both the green channel is an infra-red band that
ages.

image of Fig.�8
image of Fig.�9
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considerably between classes, as rare classes would be overestimated
due to mis-estimation from neighboring classes; however as all the
classes are of a similarmagnitude this is unlikely to be a serious problem.
Equally, 25 pixels are averaged to produce each average class at a 500 m
resolution before the change detection routine is performed. Therefore
the total area covered by each class in Fig. 8, and the changes in average
biomass class at a 500 m resolution in Fig. 7, are thought accurate to at
least a 95% (based on a simple statistical simulationmodel), and possibly
higher, suggesting that the changes observed are robust. However, using
this methodology to track changes in individual 100 m pixels is likely to
give poor estimates, so we produced a biomass change map at a 500 m
resolution, as the averaging of the class of 25 pixels gives a level of
confidence in the results (N95%) which could not be achieved with a
higher resolution (Fig. 7c).

5. Discussion

5.1. Using radar data to detect changes in forest–savanna ecotones

We detected forest expansion over a large, less-populated western
part of our study area, and rapid forest loss in the eastern side. This
strongly suggests that satellite L-band SAR data can be used to detect
biomass changes in forest–savanna transition regions. While a
reduction in signal sensitivity at higher biomasses makes the accurate
estimation of forest biomass difficult, detecting changes in the
woodiness of savannas, and detecting deforestation and degradation,
is possible using a combination of JERS and ALOS PALSAR, and in
future with two PALSAR images. The errors in the analysis have been
assessed, and shown to be small compared to the signal in the data,
increasing our confidence in results derived from L-band SAR data
combined with on-the-ground field measurements.

The lack of field data corresponding to the 1996 satellite data
increases the error in the results, but apparently not dramatically so;
although this error is impossible to quantify precisely, we can be
confident in the results given the conservative methodology and
broad biomass classes used. These broad classes mean that only pixels
that have undergone rapid biomass change will be detected, thus
providing confidence that any observed changes are genuine and not
caused by noise or mis-calibration of the datasets.

The ALOS data were captured in the wet season, and the HH signal
is therefore likely to be less sensitive to differences in biomass than if
the imagery had been obtained during the dry season with lower soil
moisture influences. Consequently, the HH data from JERS captured in
the dry season is likely to have considerably smaller errors than
suggested by the ALOS HH data. The benefits of using HV over HH can
be seen clearly, with a relationship found with r2=0.86 for the ALOS
HV data, despite the wet season image capture. This is due to the
minimal impact of soil moisture on L-band HV, which has been shown
elsewhere (Dubois et al., 1995; Oh et al., 1992).

5.2. Forest expansion

The smaller-scale (40–300 km2) reports of Boulvert (1990), Happi
(1998) andGuillet et al. (2001) showingwoody expansion in Cameroon
are consistent with our larger scale (15 000 km2) study: woody
expansion is indeed occurring in some forest–savanna transition
regions, and it is occurring rapidly, with many pixels increasing by
two biomass classes over the eleven year study period, equivalent to at
least a doubling in biomass. While this increase is rapid, it is not
necessarily unrealistic: increases of 1.4–2.0 Mg ha−1yr−1 have been
observed in the drier Miombo woodlands (Chidumayo, 1997; Williams
et al., 2008), and increases N10 Mg ha−1yr−1 have been found for
secondary forest growth in Amazonia (Feldpausch et al., 2004; Gehring
et al., 2005; Houghton et al., 2000), in wetter, less seasonal conditions.
We therefore estimate that increases in the order of 5 Mg ha−1yr−1
would be possible in this area, which is sufficient to produce the
observed increases over the eleven years.

This also corroborates a recent study using high resolution spectral
vegetation index data over a 5000 km2 region equivalent to the
central-west section of this study area from 1986 to 2006, which
found significant increases in the woody cover of the savanna regions
(Mitchard et al., 2009). Equally, this finding agrees with informal
independent field observations in the Mbam Djerem National Park:
the first 30 m or so of most gallery forests were dominated by young
pioneer trees, with a scattering of older dead and dying savanna trees
being shaded by the arrival of faster growing and ultimately taller
forest biome species (Mitchard et al., 2009 & personal observation by
ETAM, TRF, SLL & BS).

It is likely that the expansion of forest is caused by a reduction in
human disturbance, especially fire, which may have resulted from a
combination of urban migration, changes in lifestyle away from cattle
herding, and the formation of the Mbam Djerem National Park. These
factors have previously been shown to be the cause of woody
encroachment in a number of semi-arid environments in Africa (Dalle
et al., 2006; Ward, 2005). Although it is difficult to quantify the total
positive effect of the designation of the area as a National Park on
biomass gain, the study does show the potential for national parks in
forest–savanna ecotone regions to be managed to sequester carbon. It
is possible that adopting a policy of limiting savanna burning and
exploitation might enable such parks to earn valuable funds, either in
the voluntary carbonmarket or the proposed Reduced Emissions from
Deforestation and Degradation (REDD) scheme. By contrast, it
demonstrates that a policy of savanna burning may need to be
implemented in Mbam Djerem National Park in order to maintain the
unique diversity of ecosystem types present.

This study also demonstrates that a combination of satellite radar
data with field studies can provide sufficiently robust evidence to
claim and validate carbon stocks (though robust baseline data will
also be needed to enable calculations of carbon credits). Ideally
however a still-more robust analysis would be performed, using L- or
P-band data from the same sensor in the same season under similar
ground moisture conditions, in combination with field data collected
in the same year as each radar scene. This would increase the accuracy
and confidence in the results, removing any need for back calibration,
and allowing direct estimation of biomass changes per pixel, without
the need for broad biomass classes. It would also reduce the influence
of soil moisture. The impact of soil moisture in this study cannot be
ruled out entirely, although we believe it could not explain the
biomass increases observed in this study, because (a) forest–savanna
boundaries and gallery forests in the ALOS HV image are clearly
visible, (b) these boundaries correspond well with the Quickbird data,
and (c) we used a large number of biomass plots and calibration
points around the area which showed the biggest biomass increase.

5.3. Forest loss

Despite the significant gains shown in thewest, the overall biomass
trend for the study area is negative, with a net loss of 20% (1090 km2)
of high biomass forest (N150 Mg ha−1) over the 11 year study period.
The losses along the railway line and paved road on the eastern side of
the study area are very obvious, and similarly around the town of
Ngaoundal in the north-east (Fig. 9). We suspect strongly that this
change is due to human-driven deforestation and degradation (SLL
personal observation), but cannot rule out the possibility that it is due
to forest die-back following a localized drought (Dai et al., 2004). The
population density there is higher, and as well as farming and timber
extraction for fuel (both woodfuel for local use and charcoal for
transport to towns and cities), there are logging operations in the
forest areas outside the park. Clearly, the fate of woody vegetation in
this region is currently largely in the hands of humans, and without
intervention it seems likely that rapid net forest biomass losses will
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continue; biomass gains in protected areas are very unlikely to be large
enough to offset losses of forest and biomass elsewhere. However,
recent population trends leave some room for cautious optimism
regarding biomass stocks: although the urban population of Cameroon
grew by 3.61% per year from 2002 till 2006, the rural population
actually fell slightly, at an average rate of −0.023% per year (World
Bank, 2007). Yet, the growing urban population will, of course, have
larger demands for fuel, food and timber, so while remote or protected
areasmay have the potential for an increase in biomass, areas of forest
and woody savanna near settlements and access routes are likely to
continue to decrease in biomass unless affordable alternatives are
available to local biomass-based products. TheMbamDjeremNational
Park is relatively well protected and the savannas are not currently
systematically burned, and as such the land in the park may continue
sequestering carbon into the future. Given the rate of loss outside the
park, perhaps community projects in this area attempting to reduce
deforestation and promote the planting of trees may be more
successful at carbon sequestration than relying on natural regenera-
tion within undisturbed savannas (Williams et al., 2008). However, as
Geist and Lambin (2002) showed in a meta-analysis of 152 sub-
regional deforestation studies, the principal cause of deforestation is
demand from remote foreign markets, so local intervention may not
alone provide a solution. In addition to local action large-scale,
concerted international solutions such as REDD, involving making
performance-based payments to reduce deforestation and degrada-
tion rates alongside demand management for wood products, may be
necessary.
5.4. Implications for future radar satellites

While the methods used in this study are sufficient to accurately
find areas of large-magnitude biomass change, using these data we
cannot be very exact in assessing the precise magnitude of such
changes, nor of absolute carbon stocks. However, in the future it is
likely to be possible to produce quantitative estimates of biomass
change using radar backscatter images captured during the same
season over different years from identical or similar L- or P-band
polarimetric sensors. The similar geometric configuration and
radiometric accuracy of the sensors will allow the use of established
radar change detection algorithms which directly compare backscat-
ter values (Carincotte et al., 2006; Rignot & Vanzyl, 1993; Touzi et al.,
1999). This will be possible using ALOS PALSAR data (which will be
continued by ALOS-2), but also with more informative data including
information about tree heights from new satellites such as NASA's
interferometric L-band SAR and lidar DESDynI, and ESA's planned
interferometric P-band BIOMASS. Such data should allow for accurate
large-scale, high resolution and long-term monitoring of forest
degradation and regeneration.

It is also possible that the accuracy of the biomass maps produced
at each time point could be improved by the addition of optical data
and digital elevation models (DEMs) to the radar data, using
multivariate analysis techniques. Optical data, such as vegetation
indices, provide a different suite of information about forest structure
in these ecosystems (for example canopy cover; Mitchard et al., 2009)
that might be beneficial in producing more robust biomass maps, and
DEMs could be used to correct for the influence of slope on radar
backscatter. This technique of incorporating many different layers to
produce biomass maps has been conducted at a coarse resolution in
Amazonia (e.g. Saatchi et al., 2007), but would suffer from the
difficulties of acquiring comparable, high resolution and cloud-free
images captured at a similar time to the radar images for each year for
this kind of high resolution change detection. In general, however,
more information should provide greater constraints on potential
errors and improve accuracy, so this type of combined-data approach
should be investigated.
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